Menu Close

Author: Tinku Tara

x-V-J-x-ustx-zac-2-x-x-ustx-0-x-1-v-pi-2-L-l-x-0-v-X-2x-2-1-

Question Number 222523 by hu last updated on 29/Jun/25 $${x}+{V}−{J}\left({x}\right)\frac{{ustx}}{{zac}^{\mathrm{2}} {x}}={x}−\frac{{ustx}_{\mathrm{0}} }{\:\sqrt{{x}}\psi+\zeta\left(\frac{−\mathrm{1}+{v\%}}{\pi+\mathrm{2}}+\mathscr{L}_{{l}\left({x}\rightarrow\mathrm{0}\right)} ^{\:\:{v\%}} {X}_{\mathrm{2}{x}^{\mathrm{2}} } ^{\:\mathrm{1}} \right)} \\ $$ Answered by wewji12 last updated on…

Given-the-integer-k-how-to-find-the-incomplete-general-solution-for-the-non-trivial-integer-solutions-of-the-Diophantine-equation-a-4-b-4-ka-2-b-2-c-4-d-4-kc-2-d-2-a-b-c-d-N-k-Z-gcd-a-b-c-d-

Question Number 222516 by MrGaster last updated on 29/Jun/25 $$\mathrm{Given}\:\mathrm{the}\:\mathrm{integer}\:{k},\mathrm{how}\:\:\mathrm{to} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{incomplete}\:\mathrm{general} \\ $$$$\mathrm{solution}\:\mathrm{for}\:\mathrm{the}\:\mathrm{non}-\mathrm{trivial}\:\mathrm{integer} \\ $$$$\mathrm{solutions}\:\mathrm{of}\:\:\mathrm{the}\:\mathrm{Diophantine}\:\mathrm{equation}: \\ $$$${a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{ka}^{\mathrm{2}} {b}^{\mathrm{2}} ={c}^{\mathrm{4}} +{d}^{\mathrm{4}} +{kc}^{\mathrm{2}} {d}^{\mathrm{2}}…

very-very-crazy-problem-i-am-not-found-what-is-the-result-of-this-integral-1-z-z-h-z-2h-dz-

Question Number 222541 by Nicholas666 last updated on 29/Jun/25 $$ \\ $$$$\:\:\:\mathrm{very}\:\mathrm{very}\:\mathrm{crazy}\:\mathrm{problem},\:\:\mathrm{i}\:\mathrm{am}\:\mathrm{not}\:\mathrm{found} \\ $$$$\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{result}\:\mathrm{of}\:\mathrm{this}\:\mathrm{integral}; \\ $$$$\:\:\:\:\:\:\:\:\int\frac{\mathrm{1}}{\:\sqrt{{z}}\:+\:\sqrt{{z}−{h}}\:+\:\sqrt{{z}−\mathrm{2}{h}}}\:{dz} \\ $$$$ \\ $$ Commented by Ghisom last updated…

Prove-n-0-1-2-4n-2n-n-2-K-n-1-2n-1-2-192-pi-ILi-4-1-i-2-16-pi-ILi-3-1-i-2-ln-2-15pi-2-8-ln-2-1-2-ln-2-3-148-pi-4-K-n-1-1-3-1-2n-1-

Question Number 222532 by MrGaster last updated on 29/Jun/25 $$\mathrm{Prove}: \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}{n}} }\begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix}^{\mathrm{2}} \frac{\mathscr{K}_{{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{192}}{\pi}\mathfrak{I}\mathrm{Li}_{\mathrm{4}} \left(\frac{\mathrm{1}+{i}}{\mathrm{2}}\right)+\frac{\mathrm{16}}{\pi}\mathfrak{I}\mathrm{Li}_{\mathrm{3}} \left(\frac{\mathrm{1}+{i}}{\mathrm{2}}\right)\mathrm{ln}\left(\mathrm{2}\right)+\frac{\mathrm{15}\pi^{\mathrm{2}} }{\mathrm{8}}\mathrm{ln}\left(\mathrm{2}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{2}\right)^{\mathrm{3}} −\frac{\mathrm{148}}{\pi}\beta\left(\mathrm{4}\right),\mathscr{K}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\ldots+\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}} \\ $$…

The-foot-of-the-perpendicular-from-a-point-of-the-circle-x-2-y-2-1-z-0-to-the-plan-2x-3y-z-6-lie-on-curve-

Question Number 222531 by BHOOPENDRA last updated on 29/Jun/25 $${The}\:{foot}\:{of}\:{the}\:{perpendicular}\:{from}\: \\ $$$${a}\:{point}\:{of}\:{the}\:{circle}\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1},{z}=\mathrm{0} \\ $$$${to}\:{the}\:{plan}\:\mathrm{2}{x}+\mathrm{3}{y}+{z}=\mathrm{6}\:{lie}\:{on}\:{curve}−−−−−− \\ $$ Answered by mr W last updated on…

Delete-all-lines-function-deletes-all-lines-without-asking-after-deleting-all-lines-for-the-first-time-in-the-equation-editor-

Question Number 222487 by MathematicalUser2357 last updated on 28/Jun/25 $$'{Delete}\:{all}\:{lines}'\:{function}\:{deletes}\:{all}\:{lines}\:{without}\:{asking}\:{after}\:{deleting}\:{all}\:{lines}\:{for}\:{the}\:{first}\:{time}\:{in}\:{the}\:{equation}\:{editor} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com