Menu Close

Author: Tinku Tara

Prove-that-n-IN-k-1-2-n-1-1-sin-2-kpi-2-n-1-2-2n-1-2-3-Give-in-terms-of-n-k-1-2-n-1-1-sin-4-kpi-2-n-1-

Question Number 194638 by Erico last updated on 12/Jul/23 $$\mathrm{Prove}\:\mathrm{that}\:\forall{n}\in\mathrm{IN}^{\ast} \:\:\:\:\: \\ $$$$\:\:\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}^{{n}} −\mathrm{1}} {\sum}}\:\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right)}=\:\frac{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} −\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{Give}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{n}\:\:\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}^{{n}} −\mathrm{1}} {\sum}}\:\frac{\mathrm{1}}{{sin}^{\mathrm{4}} \left(\frac{{k}\pi}{\mathrm{2}^{{n}+\mathrm{1}}…

a-1-a-2-a-3-a-n-gt-0-such-that-a-i-0-i-i-1-2-3-4-n-prove-that-2-n-a-1-a-1-a-2-a-1-a-2-a-n-n-1-a-1-2-a-2-2-a-n-2-

Question Number 194634 by York12 last updated on 12/Jul/23 $${a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,{a}_{\mathrm{3}} ,….,{a}_{{n}} >\mathrm{0}\:{such}\:{that}\:{a}_{{i}} \in\left[\mathrm{0},{i}\right]\: \\ $$$$\forall\:{i}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},…,{n}\right\}\:{prove}\:{that} \\ $$$$\mathrm{2}^{{n}} .{a}_{\mathrm{1}} \left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} \right)…\left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} +…+{a}_{{n}}…

Question-194613

Question Number 194613 by cortano12 last updated on 11/Jul/23 $$\:\:\:\:\:\:\cancel{\underline{ }} \\ $$ Answered by MM42 last updated on 11/Jul/23 $$\frac{\mathrm{1}}{{log}_{{x}} \mathrm{4}{x}}+\frac{\mathrm{1}}{{log}_{{x}} \frac{{x}}{\mathrm{2}}}=\mathrm{2} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{log}_{{x}}…

Question-194612

Question Number 194612 by Abdullahrussell last updated on 11/Jul/23 Commented by TheHoneyCat last updated on 15/Jul/23 $$\left.\mathrm{1}\right)\:\mathrm{Let}\:\alpha=\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}+\mathrm{8}+\mathrm{9}=\mathrm{45} \\ $$$$\mathrm{be}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{digits}\:\mathrm{in}\:\mathrm{basis}\:\mathrm{10}. \\ $$$$\mathrm{Let}\:{S}_{\mathrm{1}} \:\mathrm{be}\:\mathrm{the}\:\mathrm{first}\:\mathrm{sum},\:{S}_{\mathrm{1},\mathrm{0}} \:\mathrm{be}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all} \\ $$$$\mathrm{unit}\:\mathrm{digits},\:{S}_{\mathrm{1},\mathrm{1}}…

Question-194624

Question Number 194624 by BaliramKumar last updated on 11/Jul/23 Commented by BaliramKumar last updated on 11/Jul/23 $$\mathrm{Please}\:\mathrm{Help}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{only}\:\mathrm{answer}\:\mathrm{no}\:\mathrm{solution} \\ $$$$\mathrm{BF}=? \\ $$$$\mathrm{FH}=? \\ $$$$\mathrm{HJ}=? \\ $$$$\mathrm{JC}=?…

where-can-I-learn-about-multiple-sigma-notaions-of-dependent-and-independent-variables-something-like-this-1-i-lt-j-lt-k-1-i-j-k-find-I-want-to-know-what-to-study-

Question Number 194610 by justenspi last updated on 11/Jul/23 $${where}\:{can}\:{I}\:{learn}\:{about}\:{multiple}\:{sigma}\:{notaions} \\ $$$${of}\:{dependent}\:{and}\:{independent}\:{variables} \\ $$$$ \\ $$$${something}\:{like}\:{this} \\ $$$$\underset{\mathrm{1}\leqslant{i}} {\sum}\underset{<{j}} {\sum}\underset{<{k}\leqslant\mathrm{1}} {\sum}\left({i}+{j}+{k}\right)=\lambda \\ $$$${find}\:\lambda \\ $$$${I}\:{want}\:{to}\:{know}\:{what}\:{to}\:{study}…