Menu Close

Author: Tinku Tara

For-what-value-of-k-the-roots-of-the-equation-x-2-2x-4x-1-k-1-k-1-will-have-same-value-but-with-opposite-symbol-like-x-a-and-a-i-mean-the-two-valuea-of-x-will-be-this-type-x-2-and-2

Question Number 222299 by fantastic last updated on 22/Jun/25 $${For}\:{what}\:{value}\:{of}\:\:{k}\:\:{the}\:{roots}\:{of}\:{the}\:{equation} \\ $$$$\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}}{\mathrm{4}{x}−\mathrm{1}}=\frac{{k}−\mathrm{1}}{{k}+\mathrm{1}} \\ $$$${will}\:{have}\:{same}\:{value}\:{but}\:\:{with}\:{opposite}\:{symbol}\left({like}\:{x}={a}\:{and}\:−{a}\right) \\ $$$${i}\:{mean}\:{the}\:{two}\:{valuea}\:{of}\:{x}\:{will}\:{be}\:{this}\:{type} \\ $$$${x}=\mathrm{2}\:{and}\:−\mathrm{2}\left({both}\:\mathrm{2}\:{but}\:{opposite}\:{symbols}\right) \\ $$ Answered by mr W…

0-f-z-dz-pi-2-0-g-z-dz-1-2-pi-0-f-z-g-z-dz-

Question Number 222317 by wewji12 last updated on 22/Jun/25 $$\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({z}\right)\mathrm{d}{z}=\frac{\pi}{\mathrm{2}}\:,\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{g}\left({z}\right)\mathrm{d}{z}=\mathrm{1} \\ $$$$\frac{\mathrm{2}}{\pi}\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({z}\right)\mathrm{g}\left({z}\right)\mathrm{d}{z}=?? \\ $$ Answered by MrGaster last updated…

Solve-36-1-x-24-1-x-16-1-x-

Question Number 222339 by Tawa11 last updated on 22/Jun/25 $$\mathrm{Solve}:\:\:\:\:\:\:\sqrt[{\mathrm{x}}]{\mathrm{36}}\:\:\:+\:\:\:\sqrt[{\mathrm{x}}]{\mathrm{24}}\:\:\:\:=\:\:\:\sqrt[{\mathrm{x}}]{\mathrm{16}} \\ $$ Answered by fantastic last updated on 22/Jun/25 $$\left(\mathrm{36}\right)^{\frac{\mathrm{1}}{{x}}} +\left(\mathrm{24}\right)^{\frac{\mathrm{1}}{{x}}} =\left(\mathrm{16}\right)^{\frac{\mathrm{1}}{{x}}} \\ $$$${or}\:\left(\frac{\mathrm{36}}{\mathrm{16}}\right)^{\frac{\mathrm{1}}{{x}}} +\left(\frac{\mathrm{24}}{\mathrm{16}}\right)^{\frac{\mathrm{1}}{{x}}}…

y-1-5-2-10-Prove-y-123-55-5-2-

Question Number 222271 by MrGaster last updated on 21/Jun/25 $${y}=\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{10}} ,\mathrm{Prove}:{y}=\frac{\mathrm{123}+\mathrm{55}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$ Answered by Rasheed.Sindhi last updated on 21/Jun/25 $${let}\:{x}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}\:}{\mathrm{2}}\:\Rightarrow{y}={x}^{\mathrm{10}} \\ $$$$\:\:\:\:\:\mathrm{2}{x}−\mathrm{1}=\sqrt{\mathrm{5}}\: \\ $$$$\:\:\:\mathrm{4}{x}^{\mathrm{2}}…