Menu Close

Author: Tinku Tara

Prove-k-1-k-sinh-pik-1-4-4-8pi-2-32pi-3-

Question Number 222276 by Nicholas666 last updated on 27/Jun/25 $$ \\ $$$$\:\mathrm{Prove};\:\underset{{k}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{k}}{\mathrm{sinh}\left(\pi{k}\right)}\:=\:\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{4}} −\:\mathrm{8}\pi^{\mathrm{2}} }{\mathrm{32}\pi^{\mathrm{3}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$ Terms of Service Privacy…

Prove-pi-pi-z-sin-z-1-z-1-z-2-3-sin-2-z-dz-2-

Question Number 222275 by Nicholas666 last updated on 21/Jun/25 $$ \\ $$$$\:\:\mathrm{Prove}\:;\:\int_{−\pi} ^{\:\pi} \:\frac{{z}\:\mathrm{sin}\left({z}\right)\:}{\left(\mathrm{1}\:+\:{z}\:+\:\sqrt{\mathrm{1}\:+\:{z}^{\mathrm{2}} }\right)\sqrt{\mathrm{3}\:+\:\mathrm{sin}^{\mathrm{2}} \left({z}\right)}}\:{dz}\:=\:\zeta\left(\mathrm{2}\right)\:\:\:\:\:\:\:\: \\ $$$$ \\ $$ Answered by MrGaster last updated…

Prove-0-1-ln-1-x-2-x-cos-ln-x-dx-1-pi-2-cosh-pi-2-

Question Number 222224 by MrGaster last updated on 20/Jun/25 $$\mathrm{Prove}:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}}\mathrm{cos}\left(\mathrm{ln}\:{x}\right){dx}=\mathrm{1}−\frac{\pi}{\mathrm{2}}\mathrm{cosh}\frac{\pi}{\mathrm{2}} \\ $$ Commented by Nicholas666 last updated on 21/Jun/25 $$\:\mathrm{i}\:\mathrm{think}\:\mathrm{the}\:\mathrm{statment}\:\mathrm{is}\:\mathrm{wrong},\: \\ $$$$\mathrm{no}\:\mathrm{1}−\frac{\pi}{\mathrm{2}}\:\mathrm{cosh}\:\frac{\pi}{\mathrm{2}}\:\mathrm{but}\:\mathrm{1}\:−\frac{\pi}{\mathrm{2}}\mathrm{chot}\:\left(\frac{\pi}{\mathrm{2}}\right)…

there-are-32-students-in-a-class-for-each-competition-in-a-sport-event-in-the-school-each-class-can-send-a-team-with-three-students-if-no-two-students-may-be-in-the-same-team-for-more-than-one-time

Question Number 222192 by mr W last updated on 22/Jun/25 $${there}\:{are}\:\mathrm{32}\:{students}\:{in}\:{a}\:{class}.\:{for} \\ $$$${each}\:{competition}\:{in}\:{a}\:{sport}\:{event}\: \\ $$$${in}\:{the}\:{school}\:{each}\:{class}\:{can}\:{send} \\ $$$${a}\:{team}\:{with}\:{three}\:{students}.\:{if}\:{no} \\ $$$${two}\:{students}\:{may}\:{be}\:{in}\:{the}\:{same} \\ $$$${team}\:{for}\:{more}\:{than}\:{one}\:{time},\:{in} \\ $$$${how}\:{many}\:{different}\:{competitions}\: \\ $$$${can}\:{this}\:{class}\:{participate}?…

Prove-1-sin-3pi-8-2-cos-pi-8-sin-pi-8-2-sin-8pi-9-1-sin-5pi-9-2-3-4sin-pi-9-2-sin-6pi-7-1-sin-4pi-7-4-sin-pi-7-cos-pi-14-

Question Number 222193 by MrGaster last updated on 20/Jun/25 $$\mathrm{Prove}: \\ $$$$\frac{\mathrm{1}}{\mathrm{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)}=\mathrm{2}\left(\mathrm{cos}\left(\frac{\pi}{\mathrm{8}}\right)−\mathrm{sin}\left(\frac{\pi}{\mathrm{8}}\right)\right) \\ $$$$\frac{\mathrm{2}}{\mathrm{sin}\left(\frac{\mathrm{8}\pi}{\mathrm{9}}\right)}−\frac{\mathrm{1}}{\mathrm{sin}\left(\frac{\mathrm{5}\pi}{\mathrm{9}}\right)}=\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{4sin}\left(\frac{\pi}{\mathrm{9}}\right) \\ $$$$\frac{\mathrm{2}}{\mathrm{sin}\left(\frac{\mathrm{6}\pi}{\mathrm{7}}\right)}+\frac{\mathrm{1}}{\mathrm{sin}\left(\frac{\mathrm{4}\pi}{\mathrm{7}}\right)}=\mathrm{4}\left(\mathrm{sin}\left(\frac{\pi}{\mathrm{7}}\right)+\mathrm{cos}\left(\frac{\pi}{\mathrm{14}}\right)\right) \\ $$ Answered by som(math1967) last updated on 20/Jun/25…