Question Number 199183 by hardmath last updated on 29/Oct/23 $$\mathrm{B},\mathrm{O},\mathrm{M}\:-\:\mathrm{Each}\:\mathrm{is}\:\mathrm{a}\:\mathrm{distinct}\:\mathrm{positive} \\ $$$$\mathrm{integer} \\ $$$$\mathrm{If}\:\:\:\mathrm{B}\:\centerdot\:\mathrm{O}\:\centerdot\:\mathrm{M}\:=\:\mathrm{223} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{max}\left(\mathrm{B}\:+\:\mathrm{O}\:+\:\mathrm{M}\right)=? \\ $$ Answered by mr W last updated on…
Question Number 199205 by universe last updated on 29/Oct/23 $$\:\:\:\:{a}_{{n}+\mathrm{1}\:} =\:{a}_{{n}} \:+\:\sqrt{{a}_{{n}} ^{\mathrm{2}} \:+\:\mathrm{1}}\:\:,\:{a}_{\mathrm{0}} \:=\:\alpha \\ $$$$\:\:\:\mathrm{find}\:\mathrm{a}_{\mathrm{n}\:} \:=\:\:?? \\ $$ Terms of Service Privacy Policy…
Question Number 199165 by hardmath last updated on 28/Oct/23 Answered by Frix last updated on 28/Oct/23 $$−\mathrm{1}=\mathrm{e}^{\mathrm{i}\pi} \\ $$$$\left(−\mathrm{1}\right)^{\pi} =\mathrm{e}^{\mathrm{i}\pi^{\mathrm{2}} } = \\ $$$$=\mathrm{cos}\:\pi^{\mathrm{2}} \:+\mathrm{i}\:\mathrm{sin}\:\pi^{\mathrm{2}}…
Question Number 199133 by hardmath last updated on 28/Oct/23 $$\mathrm{a}^{\mathrm{2}} \mathrm{b}\:−\:\mathrm{1}\:=\:\mathrm{1999} \\ $$$$\mathrm{how}\:\mathrm{many}\:\mathrm{natural}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\left(\mathrm{a},\mathrm{b}\right)\:\mathrm{have}? \\ $$ Answered by Rasheed.Sindhi last updated on 28/Oct/23 $$\mathrm{a}^{\mathrm{2}}…
Question Number 199135 by hardmath last updated on 28/Oct/23 $$\mathrm{a}\:+\:\frac{\mathrm{1}}{\mathrm{a}}\:=\:\mathrm{3} \\ $$$$\mathrm{find}:\:\:\:\mathrm{a}^{\mathrm{5}} \:+\:\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{5}} }\:\:=\:\:? \\ $$ Answered by som(math1967) last updated on 28/Oct/23 $$\mathrm{123} \\…
Question Number 199093 by Calculusboy last updated on 28/Oct/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 199159 by cortano12 last updated on 28/Oct/23 $$\:\sqrt[{\mathrm{4}}]{\mathrm{8}\left(\mathrm{x}+\mathrm{1}\right)}\:+\sqrt[{\mathrm{4}}]{\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}−\mathrm{1}}}\:=\sqrt[{\mathrm{4}}]{\mathrm{5}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\mathrm{3}}\: \\ $$$$\:\mathrm{x}=? \\ $$ Answered by Frix last updated on 28/Oct/23 $$\mathrm{You}\:\mathrm{can}\:\mathrm{only}\:\mathrm{approximate} \\…
Question Number 199112 by hardmath last updated on 28/Oct/23 $$\begin{cases}{\mathrm{a}^{\mathrm{2}} \:−\:\mathrm{b}\:=\:\mathrm{73}}\\{\mathrm{b}^{\mathrm{2}} \:−\:\mathrm{a}\:=\:\mathrm{73}}\end{cases}\:\:\:\:\:\mathrm{find}:\:\mathrm{a},\mathrm{b}\:=\:? \\ $$ Answered by mr W last updated on 28/Oct/23 $$\left({i}\right)−\left({ii}\right): \\ $$$${a}^{\mathrm{2}}…
Question Number 199109 by mnjuly1970 last updated on 28/Oct/23 $$ \\ $$$$\:{Q}:\:\:\:\:\alpha\:,\:\beta\:,\gamma\:{are}\:{the}\:{roots}\:{of}\:{the}\:{following} \\ $$$$\:\:\:\:\:{equation}\:.\:{find}\:{the}\:{value}\:{of}: \\ $$$$ \\ $$$$\:\:\:\:\:{Eq}^{\:{n}} \::\:\:\:{x}^{\:\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} \:+\:{x}\:+\:\mathrm{2}=\mathrm{0} \\ $$$$\:\:\:{E}\:=\:\frac{\alpha}{\beta\:+\gamma}\:+\frac{\beta}{\alpha\:+\gamma}\:+\frac{\gamma}{\alpha+\:\beta} \\ $$$$…
Question Number 199170 by tri26112004 last updated on 28/Oct/23 $${n}^{\mathrm{4}} +\mathrm{2}{n}^{\mathrm{3}} +\mathrm{2}{n}^{\mathrm{2}} +{n}+\mathrm{7}\:=\:{a}^{\mathrm{2}} \:\left({a}\in{N}\right) \\ $$$$\rightarrow{n}=¿\:\left({n}\in{N}\right) \\ $$ Commented by Rasheed.Sindhi last updated on 31/Oct/23…