Menu Close

Category: Algebra

x-V-J-x-ustx-zac-2-x-x-ustx-0-x-1-v-pi-2-L-l-x-0-v-X-2x-2-1-

Question Number 222523 by hu last updated on 29/Jun/25 $${x}+{V}−{J}\left({x}\right)\frac{{ustx}}{{zac}^{\mathrm{2}} {x}}={x}−\frac{{ustx}_{\mathrm{0}} }{\:\sqrt{{x}}\psi+\zeta\left(\frac{−\mathrm{1}+{v\%}}{\pi+\mathrm{2}}+\mathscr{L}_{{l}\left({x}\rightarrow\mathrm{0}\right)} ^{\:\:{v\%}} {X}_{\mathrm{2}{x}^{\mathrm{2}} } ^{\:\mathrm{1}} \right)} \\ $$ Answered by wewji12 last updated on…

Is-the-statement-correct-in-const-x-a-bx-n-0-x-a-2b-n-1-n-gt-0-N-b-a-b-a-G-n-1-n-0-

Question Number 222511 by hu last updated on 28/Jun/25 $${Is}\:{the}\:{statement}\:{correct}? \\ $$$${in}\:{const}.“\:{x}+{a}−{bx}^{{n}} =\left\{\mathrm{0}\right\}\:'' \\ $$$${x}=\begin{cases}{−{a}\pm\frac{\mathrm{2}{b}}{{n}+\mathrm{1}}\:,\:{n}>\mathrm{0}}\\{{N}_{{b}} ^{\:{a}} \:\int_{{b}} ^{\:{a}} {G}\left({n}−\mathrm{1}\right),\:{n}\leqslant\mathrm{0}}\end{cases} \\ $$ Terms of Service Privacy…

This-is-VERY-HARD-x-y-0-l-y-1-x-N-y-v-for-x-1-v-for-x-x-0-c-7-x-y-

Question Number 222501 by hu last updated on 28/Jun/25 $${This}\:{is}\:{VERY}\:{HARD} \\ $$$$\begin{cases}{\begin{cases}{{x}+{y}=\mathrm{0}}\\{{l}\left({y}\right)=\mathrm{1}}\end{cases}}\\{\begin{cases}{{x}\in\mathbb{N}}\\{−{y}=\begin{cases}{{v\%},\:\:{for}\:{x}\circlearrowleft\gamma\left(\mathrm{1}\right)}\\{−{v\%},\:\:{for}\:{x}\looparrowright\theta\left(\oint_{−{x}} ^{\:\mathrm{0}} \frac{{c}}{\mathrm{7}}\right)}\end{cases}}\end{cases}}\end{cases} \\ $$$${x}=?,\:{y}=? \\ $$ Answered by wewji12 last updated on 28/Jun/25…

For-what-value-of-k-the-roots-of-the-equation-x-2-2x-4x-1-k-1-k-1-will-have-same-value-but-with-opposite-symbol-like-x-a-and-a-i-mean-the-two-valuea-of-x-will-be-this-type-x-2-and-2

Question Number 222299 by fantastic last updated on 22/Jun/25 $${For}\:{what}\:{value}\:{of}\:\:{k}\:\:{the}\:{roots}\:{of}\:{the}\:{equation} \\ $$$$\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}}{\mathrm{4}{x}−\mathrm{1}}=\frac{{k}−\mathrm{1}}{{k}+\mathrm{1}} \\ $$$${will}\:{have}\:{same}\:{value}\:{but}\:\:{with}\:{opposite}\:{symbol}\left({like}\:{x}={a}\:{and}\:−{a}\right) \\ $$$${i}\:{mean}\:{the}\:{two}\:{valuea}\:{of}\:{x}\:{will}\:{be}\:{this}\:{type} \\ $$$${x}=\mathrm{2}\:{and}\:−\mathrm{2}\left({both}\:\mathrm{2}\:{but}\:{opposite}\:{symbols}\right) \\ $$ Answered by mr W…

Solve-36-1-x-24-1-x-16-1-x-

Question Number 222339 by Tawa11 last updated on 22/Jun/25 $$\mathrm{Solve}:\:\:\:\:\:\:\sqrt[{\mathrm{x}}]{\mathrm{36}}\:\:\:+\:\:\:\sqrt[{\mathrm{x}}]{\mathrm{24}}\:\:\:\:=\:\:\:\sqrt[{\mathrm{x}}]{\mathrm{16}} \\ $$ Answered by fantastic last updated on 22/Jun/25 $$\left(\mathrm{36}\right)^{\frac{\mathrm{1}}{{x}}} +\left(\mathrm{24}\right)^{\frac{\mathrm{1}}{{x}}} =\left(\mathrm{16}\right)^{\frac{\mathrm{1}}{{x}}} \\ $$$${or}\:\left(\frac{\mathrm{36}}{\mathrm{16}}\right)^{\frac{\mathrm{1}}{{x}}} +\left(\frac{\mathrm{24}}{\mathrm{16}}\right)^{\frac{\mathrm{1}}{{x}}}…