Menu Close

Category: Algebra

a-5-2-6-then-a-1-a-

Question Number 221238 by fantastic last updated on 28/May/25 $${a}=\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}\:{then}\:\left\{\sqrt{{a}}−\frac{\mathrm{1}}{\:\sqrt{{a}}}\right\}=?? \\ $$ Answered by Rasheed.Sindhi last updated on 28/May/25 $${a}=\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}\:{then}\:\left\{\sqrt{{a}}−\frac{\mathrm{1}}{\:\sqrt{{a}}}\right\}=?? \\ $$$${a}=\left(\sqrt{\mathrm{2}}\:\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{3}}\:\right)^{\mathrm{2}} +\mathrm{2}\left(\sqrt{\mathrm{2}}\:\right)\left(\sqrt{\mathrm{3}}\:\right) \\…

2-x-4-y-8-z-and-1-2x-1-1-4y-1-6z-24-7-z-

Question Number 221239 by fantastic last updated on 28/May/25 $$\mathrm{2}^{{x}} =\mathrm{4}^{{y}} =\mathrm{8}^{{z}} \:\:{and}\:\left(\frac{\mathrm{1}}{\mathrm{2}{x}}+\mathrm{1}\frac{\mathrm{1}}{\mathrm{4}{y}}+\frac{\mathrm{1}}{\mathrm{6}{z}}\right)=\frac{\mathrm{24}}{\mathrm{7}}\:\:\: \\ $$$${z}=?? \\ $$ Answered by Rasheed.Sindhi last updated on 28/May/25 $$\mathrm{2}^{{x}}…

x-2-x-x-2-x-x-2-x-x-2-x-x-2-x-1-3-1-3-3-4-2-x-

Question Number 221151 by gregori last updated on 25/May/25 $$\:\frac{\sqrt{{x}^{\mathrm{2}} −{x}−\sqrt{{x}^{\mathrm{2}} −{x}−\sqrt{{x}^{\mathrm{2}} −{x}−\sqrt{…}}}}}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} \:\sqrt{{x}\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} \:\sqrt{{x}…}}}}}\:=\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\:\Rightarrow\:\frac{\mathrm{2}}{{x}}\:=?\: \\ $$ Commented by Frix last updated on…

Question-221168

Question Number 221168 by universe last updated on 25/May/25 Answered by Frix last updated on 26/May/25 $$\mathrm{Let}\:{b}={pa}\wedge{p}<\mathrm{0} \\ $$$$\lambda=\mathrm{min}\:\left(\frac{{p}−\mathrm{1}}{{ap}}\sqrt{\mathrm{2}{a}^{\mathrm{4}} {p}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{2}} {p}+\mathrm{1}}\right) \\ $$$$\mathrm{Using}\:\mathrm{partial}\:\mathrm{differenciation}\:\mathrm{we}\:\mathrm{get} \\…

South-Korean-Grade-12-math-Prove-log-a-M-n-nlog-a-M-Using-below-When-M-a-x-log-a-M-x-When-N-a-y-log-a-N-y-MN-a-x-a-y-a-x-y-So-log-a-MN-log-a-a-x-y-x-y-log-a-M-log-a-N-

Question Number 221135 by MathematicalUser2357 last updated on 25/May/25 $$\mathrm{South}\:\mathrm{Korean}\:\mathrm{Grade}\:\mathrm{12}\:\mathrm{math} \\ $$$$\mathrm{Prove}\:\mathrm{log}_{{a}} {M}^{{n}} ={n}\mathrm{log}_{{a}} {M} \\ $$$$\mathrm{Using}\:\mathrm{below}: \\ $$$$\mathrm{When}\:{M}={a}^{{x}} ,\:\mathrm{log}_{{a}} {M}={x} \\ $$$$\mathrm{When}\:{N}={a}^{{y}} ,\:\mathrm{log}_{{a}} {N}={y}…