Menu Close

Category: Algebra

what-is-the-HCF-of-8k-1-and-9k-where-k-Z-

Question Number 193045 by Trent1111 last updated on 02/Jun/23 $${what}\:{is}\:{the}\:{HCF}\:{of}\: \\ $$$$\mathrm{8}{k}+\mathrm{1}\:{and}\:\mathrm{9}{k}\:?\:{where}\:{k}\:\in\:\mathbb{Z}^{+} \\ $$ Answered by MM42 last updated on 02/Jun/23 $$\left(\mathrm{8}{k}+\mathrm{1},\mathrm{9}{k}\right)={d} \\ $$$${d}\mid\mathrm{8}{k}+\mathrm{1}\:\Rightarrow{d}\mid\mathrm{72}{k}+\mathrm{9}\:\:\: \\…

if-sin-x-1-sin-x-2-sin-x-100-0-find-the-maximum-value-of-sin-5-x-1-sin-5-x-2-sin-5-x-100-x-1-x-2-x-100-R-

Question Number 127500 by mr W last updated on 30/Dec/20 $${if}\:\mathrm{sin}\:{x}_{\mathrm{1}} +\mathrm{sin}\:{x}_{\mathrm{2}} +…+\mathrm{sin}\:{x}_{\mathrm{100}} =\mathrm{0}, \\ $$$${find}\:{the}\:{maximum}\:{value}\:{of} \\ $$$$\mathrm{sin}^{\mathrm{5}} \:{x}_{\mathrm{1}} +\mathrm{sin}^{\mathrm{5}} \:{x}_{\mathrm{2}} +…+\mathrm{sin}^{\mathrm{5}} \:{x}_{\mathrm{100}} . \\…

Question-193026

Question Number 193026 by Mingma last updated on 02/Jun/23 Answered by aleks041103 last updated on 02/Jun/23 $$\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)^{\mathrm{3}} =\mathrm{3}^{\mathrm{3}} +\mathrm{3}×\mathrm{3}^{\mathrm{2}} ×\sqrt{\mathrm{5}}+\mathrm{3}×\mathrm{3}×\mathrm{5}+\mathrm{5}\sqrt{\mathrm{5}}= \\ $$$$=\mathrm{27}+\mathrm{45}+\mathrm{32}\sqrt{\mathrm{5}}=\mathrm{72}+\mathrm{32}\sqrt{\mathrm{5}} \\ $$$$\mathrm{32}\sqrt{\mathrm{5}}=\sqrt{\mathrm{5}×\mathrm{32}^{\mathrm{2}} }=\sqrt{\mathrm{5}×\mathrm{1024}}=\sqrt{\mathrm{5120}}=\mathrm{71}+{r}…

Question-127481

Question Number 127481 by Mathgreat last updated on 30/Dec/20 Commented by hknkrc46 last updated on 30/Dec/20 $${g}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:+\:\mathrm{1}\:\Rightarrow\:{g}^{−\mathrm{1}} \left({x}\right)\:=\:\sqrt[{\mathrm{3}}]{{x}\:−\:\mathrm{1}} \\ $$$${f}\left({x}^{\mathrm{3}} \:+\:\mathrm{1}\right)\mid_{\sqrt[{\mathrm{3}}]{{x}\:−\:\mathrm{1}}} \:=\:\left({x}^{\mathrm{5}} \:+\:\mathrm{4}{x}\:+\:\mathrm{2}\right)\mid_{\sqrt[{\mathrm{3}}]{{x}\:−\:\mathrm{1}}} \\…

find-the-value-of-n-0-n-3-5-n-

Question Number 61937 by Tawa1 last updated on 12/Jun/19 $$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\:\:\:\underset{\mathrm{n}\:=\:\mathrm{0}} {\overset{\infty} {\sum}}\:\:\frac{\mathrm{n}^{\mathrm{3}} \:+\:\mathrm{5}}{\mathrm{n}!} \\ $$ Commented by mr W last updated on 12/Jun/19 $${seems}\:{to}\:{be}\:\mathrm{10}{e}. \\…

let-A-1-1-0-1-1-calculate-A-n-2-find-e-A-e-A-3-determine-e-iA-then-cosA-and-sinA-

Question Number 61895 by maxmathsup by imad last updated on 10/Jun/19 $${let}\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:−\mathrm{1}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{e}^{{A}} \:\:,{e}^{−{A}} \\ $$$$\left.\mathrm{3}\right)\:{determine}\:{e}^{{iA}} \:\:\:{then}\:\:{cosA}\:\:{and}\:{sinA}\:. \\ $$ Commented by maxmathsup…

1-4-of-2-5-

Question Number 61892 by hhghg last updated on 10/Jun/19 $$\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{of}\:\frac{\mathrm{2}}{\mathrm{5}} \\ $$ Commented by Rasheed.Sindhi last updated on 11/Jun/19 $$\frac{\mathrm{2}}{\mathrm{5}}×\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{10}} \\ $$ Terms of Service…

6-3-2-

Question Number 127429 by Study last updated on 29/Dec/20 $$\mathrm{6}\boldsymbol{\div}\mathrm{3}\left(\mathrm{2}\right)=??? \\ $$ Commented by talminator2856791 last updated on 29/Dec/20 $$\:\mathrm{why}\:\mathrm{is}\:\mathrm{your}\:\mathrm{name}\:\mathrm{in}\:\mathrm{red}? \\ $$ Terms of Service…

bx-3-10a-2-bx-3a-3-y-ay-3-10ab-2-y-3b-3-x-solve-for-x-and-y-in-terms-of-a-b-and-solve-for-a-and-b-in-terms-of-x-y-

Question Number 192957 by York12 last updated on 31/May/23 $$ \\ $$$${bx}^{\mathrm{3}} =\mathrm{10}{a}^{\mathrm{2}} {bx}\:+\:\mathrm{3}{a}^{\mathrm{3}} {y}\:,\:{ay}^{\mathrm{3}} =\:\mathrm{10}{ab}^{\mathrm{2}} {y}\:+\:\mathrm{3}{b}^{\mathrm{3}} {x} \\ $$$${solve}\:{for}\:{x}\:{and}\:{y}\:{in}\:{terms}\:{of}\:\left({a}\:,\:{b}\right) \\ $$$${and}\:{solve}\:{for}\:{a}\:{and}\:{b}\:{in}\:{terms}\:{of}\:\:\left({x}\:,\:{y}\:\right) \\ $$ Commented…