Question Number 192688 by Erico last updated on 24/May/23 $$\mathrm{Prove}\:\mathrm{that}\:: \\ $$$$\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \:=\:\frac{\mathrm{1}}{\mathrm{2}\pi}\:\underset{\:−\pi} {\int}^{\:\:\:\pi} \left(\mathrm{2cos}\frac{\theta}{\mathrm{2}}\right)^{\mathrm{n}} \mathrm{cos}\left[\left(\frac{\mathrm{n}}{\mathrm{2}}−\mathrm{k}\right)\theta\right]\mathrm{d}\theta \\ $$ Answered by witcher3 last updated on…
Question Number 127155 by DomaPeti last updated on 27/Dec/20 $$\underset{\mathrm{0}} {\overset{{X}} {\int}}−{f}\left({x}\right)\:{dx}={f}\left({X}\right)\centerdot{c}\centerdot\left({X}\centerdot{c}_{\mathrm{1}} +{c}_{\mathrm{2}} \right) \\ $$$${f}\left({x}\right)=? \\ $$$$ \\ $$ Commented by mr W last…
Question Number 192676 by Shrinava last updated on 24/May/23 $$\mathrm{Find}:\:\:\:\mathrm{x}\:=\:? \\ $$$$\mathrm{1}.\:\:\mathrm{lg}\left(\mathrm{5x}^{\mathrm{2}} \:−\:\mathrm{6}\right)\centerdot\mathrm{lg}\left(\mathrm{5x}\:−\:\mathrm{6}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{2}.\:\:\left(\mathrm{2x}\:−\:\mathrm{5}\right)\centerdot\mathrm{log}_{\mathrm{3}} \left(\mathrm{1},\mathrm{5}\:−\:\mathrm{x}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{3}.\:\:\mathrm{4}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{14}\centerdot\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{32}\:=\:\mathrm{0} \\ $$ Answered by Frix…
Question Number 127144 by peter frank last updated on 27/Dec/20 Answered by talminator2856791 last updated on 28/Dec/20 $$\:\mathrm{is}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{200}? \\ $$ Commented by peter frank last…
Question Number 61605 by Mr X pcx last updated on 05/Jun/19 $${solve}\:\:{at}\:{Z}^{\mathrm{2}} \:\:\:\:\mathrm{2}{x}\:+\mathrm{5}{y}\:=\mathrm{4} \\ $$ Commented by mr W last updated on 05/Jun/19 $${x}=\mathrm{2}−\mathrm{5}{n} \\…
Question Number 192675 by ajfour last updated on 24/May/23 Answered by a.lgnaoui last updated on 26/May/23 Commented by ajfour last updated on 26/May/23 $${not}\:{legible} \\…
Question Number 192661 by Mingma last updated on 24/May/23 Commented by Mingma last updated on 24/May/23 Prove that Commented by Mingma last updated on 25/May/23 Perfect …
Question Number 61591 by MJS last updated on 05/Jun/19 $$\mathrm{solve}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$$\sqrt[{\mathrm{2}}]{{z}}=−\mathrm{1} \\ $$$$\sqrt[{\mathrm{3}}]{{z}}=−\mathrm{1} \\ $$$$\sqrt[{\mathrm{4}}]{{z}}=−\mathrm{1} \\ $$ Commented by Smail last updated on 05/Jun/19…
Question Number 127094 by kolos last updated on 26/Dec/20 Commented by kolos last updated on 26/Dec/20 $${can}\:{anyone}\:{prove}\:{this}? \\ $$ Answered by mindispower last updated on…
Question Number 192629 by Engr_Jidda last updated on 23/May/23 $${Z}={f}\left({x}_{\mathrm{1},} {x}_{\mathrm{2},} {x}_{\mathrm{3}} \right)={x}_{\mathrm{1}} {x}_{\mathrm{2}} +{x}_{\mathrm{1}} ^{\mathrm{5}} −{x}_{\mathrm{2}} ^{\mathrm{2}} {x}_{\mathrm{3}} \:{find}\:{f}_{\mathrm{1}} ,{f}_{\mathrm{11}} ,{and}\:{f}_{\mathrm{21}} \\ $$ Terms…