Question Number 192630 by Engr_Jidda last updated on 23/May/23 $${z}={xy}−\mathrm{5}{x}+\mathrm{2}{y}.\:{find}\:\frac{{dz}}{{dx}}\:{and}\:\frac{{dz}}{{dy}}\:{at}\left(\mathrm{2},\mathrm{4}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 192625 by Subhi last updated on 23/May/23 $${lim}_{{x}\rightarrow\mathrm{0}} \frac{{sin}^{\mathrm{4}} \left(\pi{cos}\left({x}\right)\right)}{\mathrm{1}−{cos}\left(\mathrm{1}−{cos}\left(\mathrm{1}−{cos}\left({x}\right)\right)\right)} \\ $$ Commented by Subhi last updated on 23/May/23 $${I}\:{got}\:\mathrm{8}\pi^{\mathrm{4}} \\ $$ Answered…
Question Number 127090 by physicstutes last updated on 26/Dec/20 $$\mathrm{Given}\:\mathrm{that}\: \\ $$$$\:\:\mathcal{I}_{{n}} \:=\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{x}\left(\mathrm{1}−{x}\right)^{{n}} {dx}\:,\:{n}\:\in\:\mathbb{Z}^{+} \\ $$$$\:\mathrm{show}\:\mathrm{that}\:\:\left({n}+\mathrm{2}\right)\mathcal{I}_{{n}} \:=\:{nI}_{{n}−\mathrm{1}} ,\:{n}\:\geqslant\:\mathrm{1}. \\ $$ Answered by Dwaipayan…
Question Number 192596 by York12 last updated on 22/May/23 Answered by a.lgnaoui last updated on 24/May/23 $$\left(\mathrm{x}_{\mathrm{m}} +\mathrm{iy}_{\mathrm{m}} \right)^{\mathrm{2}\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}}\right)} =\mathrm{1}\Leftrightarrow\left[\left(\mathrm{x}_{\mathrm{m}} +\mathrm{iy}_{\mathrm{m}} \right)^{\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}}} −\mathrm{1}\right]×\left[\left(\mathrm{x}_{\mathrm{m}} +\mathrm{iy}_{\mathrm{m}} \right)^{\mathrm{n}+\frac{\mathrm{1}}{\mathrm{n}}}…
Question Number 61526 by Jarbas last updated on 04/Jun/19 $${Solve}\:{for}\:{n}:\:{D}/{A}×\left\{\mathrm{1}−\frac{{P}×\left(\frac{\left(\mathrm{1}+{i}\right)^{{n}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{n}} −\mathrm{1}}\right)}{\left({P}×\left(\frac{\left(\mathrm{1}+{i}\right)^{{r}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{r}} −\mathrm{1}}\right)\right)−\frac{{R}}{{i}}×\left[\left(\frac{\mathrm{1}}{{n}}+{i}\right)×\left(\frac{\left(\mathrm{1}+{i}\right)^{{r}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{r}} −\mathrm{1}}\right)−\left(\frac{\mathrm{1}}{{n}}+{i}\right)×\left(\frac{\left(\mathrm{1}+{i}\right)^{{n}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{n}} −\mathrm{1}}\right)\right]}\right\}−\mathrm{1}=\mathrm{0} \\ $$$$ \\ $$ Terms of Service…
Question Number 192594 by York12 last updated on 22/May/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 61495 by bhanukumarb2@gmail.com last updated on 03/Jun/19 Commented by bhanukumarb2@gmail.com last updated on 03/Jun/19 $${prove}\:{second}\:{in}\:{which}\:{book}\:{i}\:{can}\:{get}\: \\ $$$${these}\:{type}\:{approximation} \\ $$ Commented by bhanukumarb2@gmail.com last…
Question Number 61490 by MJS last updated on 03/Jun/19 $$\sqrt{{a}−\sqrt{{a}+{x}}}+\sqrt{{a}+\sqrt{{a}−{x}}}=\mathrm{2}{x} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{Sir}\:\mathrm{Aifour}\:\mathrm{and}\:\mathrm{me}\:\mathrm{found} \\ $$$$ \\ $$$$\mathrm{trivial}\:\mathrm{solution}\:{a}={x}=\mathrm{0} \\ $$$$ \\ $$$${a},\:{x}\:\in\mathbb{R} \\ $$$$ \\ $$$${x}=\frac{\sqrt{\mathrm{2}}}{\mathrm{8}}\left({r}+\sqrt{{r}^{\mathrm{2}} +\mathrm{4}}\right)\sqrt{\mathrm{2}\left(\mathrm{4}{a}−\mathrm{1}\right)−{r}^{\mathrm{2}}…
Question Number 127006 by liberty last updated on 26/Dec/20 $${Two}\:{pipes}\:{A}\:{and}\:{B}\:{together}\:{can}\:{fill}\: \\ $$$${a}\:{cistern}\:{in}\:\mathrm{5}\:{hours}.\:{Had}\:{they}\:{been}\:{opened} \\ $$$${separately},\:{then}\:{B}\:{would}\:{have}\:{taken}\: \\ $$$$\mathrm{6}\:{hours}\:{more}\:{than}\:{A}\:{to}\:{fill}\:{the}\:{cistern}. \\ $$$${How}\:{much}\:{time}\:{will}\:{be}\:{taken}\:{by}\:{A}\:{to}\:{fill} \\ $$$${the}\:{cistern}\:{separately}?\: \\ $$ Answered by bramlexs22…
Question Number 61470 by Rasheed.Sindhi last updated on 03/Jun/19 $$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{other}\:\mathrm{solution}\:\mathrm{besides} \\ $$$$\left\{\mathrm{x}=\mathrm{a},\mathrm{y}=\mathrm{b}\right\}\:\mathrm{or}\:\left\{\mathrm{x}=\mathrm{b},\mathrm{y}=\mathrm{a}\right\}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations} \\ $$$$\:\:\:\:\mathrm{x}+\mathrm{y}=\mathrm{a}+\mathrm{b}\:\:\wedge\:\mathrm{x}^{\mathrm{7}} +\mathrm{y}^{\mathrm{7}} =\mathrm{a}^{\mathrm{7}} +\mathrm{b}^{\mathrm{7}} \:\:? \\ $$$$ \\ $$ Answered…