Question Number 61269 by alphaprime last updated on 31/May/19 $${Let}\:{p}\left({x}\right)\:{be}\:{a}\:{quadratic}\:{polynomial}\:{such} \\ $$$${that}\:{for}\:{distinct}\:\alpha\:{and}\:\beta\:, \\ $$$${p}\left(\alpha\right)\:=\:\alpha\:{and}\:{p}\left(\beta\right)\:=\beta \\ $$$${prove}\:{that}\:\alpha\:{and}\:\beta\:{are}\:{roots}\:{of}\:\:{p}\left[{p}\left({x}\right)\right]−{x}=\mathrm{0}\: \\ $$$${Find}\:{the}\:{remaining}\:{roots}\:. \\ $$ Answered by ajfour last updated…
Question Number 61267 by behi83417@gmail.com last updated on 31/May/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 61268 by alphaprime last updated on 31/May/19 $${Let}\:{a},{b},{c},{d},{e}\:\geqslant\:−\mathrm{1}\:{and}\:{a}+{b}+{c}+{d}+{e}=\mathrm{5} \\ $$$${Find}\:{the}\:{maximum}\:{and}\:{minimum} \\ $$$${value}\:{of}\:{S}\:=\left({a}+{b}\right)\left({b}+{c}\right)\left({c}+{d}\right)\left({d}+{e}\right)\left({e}+{a}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 192330 by Shrinava last updated on 14/May/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 61211 by alphaprime last updated on 30/May/19 $${Solve}\:{for}\:{x}\:{in}\:{terms}\:{of}\:{a}\: \\ $$$$\sqrt{{a}−\sqrt{{a}+{x}\:}}\:+\:\:\sqrt{{a}+\sqrt{{a}−{x}}}\:=\:\mathrm{2}{x} \\ $$$${Please}\:{sir}\:{i}\:{request}\:{you}\:{to}\:{solve}\:{this}\: \\ $$$${question}\:=\_= \\ $$ Commented by maxmathsup by imad last updated…
Question Number 126723 by ajfour last updated on 23/Dec/20 Commented by prakash jain last updated on 23/Dec/20 $$\mathrm{Two}\:\mathrm{assumptions} \\ $$$${p}^{\mathrm{2}} +\mathrm{2}{pq}=\mathrm{1} \\ $$$${q}=\mathrm{2}{c} \\ $$$$\mathrm{You}\:\mathrm{are}\:\mathrm{substituting}\:\mathrm{a}\:\mathrm{given}\:\mathrm{value}…
Question Number 126702 by Eric002 last updated on 30/Dec/20 $${if}\:\:\:\:{tanh}\frac{{x}}{\mathrm{2}}={t}\:\:{prove}\:{that}\:\:{cosh}\left({x}\right)=\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$$$ \\ $$ Answered by MJS_new last updated on 23/Dec/20 $$\mathrm{tanh}\:\alpha\:=\frac{\mathrm{e}^{\mathrm{2}\alpha} −\mathrm{1}}{\mathrm{e}^{\mathrm{2}\alpha}…
Question Number 126700 by Eric002 last updated on 23/Dec/20 $$\theta={sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{5}}\right)\:{find}\:{cos}\left(\theta\right)\:{and}\:{tan}\left(\theta\right) \\ $$$$ \\ $$ Answered by akornes last updated on 23/Dec/20 $${cos}\theta=\pm\frac{\sqrt{\mathrm{21}}}{\mathrm{5}}\:{and}\:{tan}\theta=\pm\frac{\mathrm{2}\sqrt{\mathrm{21}}}{\mathrm{21}} \\ $$…
Question Number 126701 by Eric002 last updated on 23/Dec/20 $${use}\:{right}\:{triangles}\:{to}\:{explain} \\ $$$${why}\:{cos}^{−\mathrm{1}} \left({x}\right)+{sin}^{−\mathrm{1}} \left({x}\right)=\pi/\mathrm{2} \\ $$ Answered by ebi last updated on 23/Dec/20 $$ \\…
Question Number 61162 by Tawa1 last updated on 29/May/19 $$\mathrm{if}\:\:\:\:\:\mathrm{sin}\left(\mathrm{x}\right)\:\:=\:\:\frac{\mathrm{x}\:−\:\mathrm{20}}{\mathrm{20}}\:\:,\:\:\:\mathrm{find}\:\:\mathrm{x} \\ $$ Commented by kaivan.ahmadi last updated on 29/May/19 $${we}\:{can}\:{find}\:{number}\:{of}\:{solution}\:{by}\:{plote} \\ $$$${y}={sinx}\:{and}\:{y}=\frac{{x}−\mathrm{20}}{\mathrm{20}} \\ $$$${this}\:{equation}\:{has}\:\mathrm{13}\:{answer} \\…