Question Number 191147 by Shrinava last updated on 19/Apr/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 191146 by Shrinava last updated on 19/Apr/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 191138 by Shrinava last updated on 18/Apr/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 60056 by bhanukumarb2@gmail.com last updated on 17/May/19 Commented by maxmathsup by imad last updated on 17/May/19 $${we}\:{see}\:{that}\:\:{S}\:=\sum_{{k}=\mathrm{0}} ^{\infty} \:\frac{{sin}\left({k}\theta\right){cos}^{{k}} \theta}{{k}!}\:\Rightarrow{S}\:={Im}\left(\sum_{{k}=\mathrm{0}} ^{\infty} \:\frac{{e}^{{ik}\theta} \:{cos}^{{k}}…
Question Number 191127 by Mingma last updated on 18/Apr/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 60052 by bhanukumarb2@gmail.com last updated on 17/May/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 125577 by ajfour last updated on 12/Dec/20 Commented by ajfour last updated on 12/Dec/20 $${If}\:{the}\:{cubic}\:{curve}'{s}\:{eq}.\:\:{is} \\ $$$${y}={x}^{\mathrm{3}} −{x}−{c} \\ $$$${and}\:{parabola}'{s}\:{eq}.\:{is}\: \\ $$$${y}=\left({x}−{h}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}−{c}\right)\:,\:{then}…
Question Number 60039 by MJS last updated on 17/May/19 $$\mathrm{find}\:\mathrm{all}\:\mathrm{solutions}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$${z}^{\mathrm{i}} =\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{i} \\ $$$${z}^{\mathrm{1}−\mathrm{i}} =\mathrm{1}+\mathrm{i} \\ $$ Commented by maxmathsup by imad last updated…
Question Number 191111 by Shrinava last updated on 18/Apr/23 $${bb}\mathrm{55}{bb} \\ $$ Commented by mr W last updated on 18/Apr/23 $$\mathrm{12277179} \\ $$ Commented by…
Question Number 191103 by Mingma last updated on 18/Apr/23 Answered by Rasheed.Sindhi last updated on 18/Apr/23 $$\mathrm{4}^{−\frac{\mathrm{1}}{{x}}} +\mathrm{6}^{−\frac{\mathrm{1}}{{x}}} =\mathrm{9}^{−\frac{\mathrm{1}}{{x}}} \\ $$$$\frac{\mathrm{2}^{−\mathrm{2}/{x}} }{\mathrm{2}^{−\mathrm{1}/{x}} \centerdot\mathrm{3}^{−\mathrm{1}/{x}} }+\frac{\mathrm{2}^{−\mathrm{1}/{x}} \centerdot\mathrm{3}^{−\mathrm{1}/{x}}…