Menu Close

Category: Algebra

f-x-y-f-x-f-y-x-y-f-4-10-finde-f-2022-

Question Number 190704 by mathlove last updated on 09/Apr/23 $${f}\left({x}+{y}\right)={f}\left({x}\right)+{f}\left({y}\right)+{x}\centerdot{y} \\ $$$${f}\left(\mathrm{4}\right)=\mathrm{10}\:\:{finde}\:{f}\left(\mathrm{2022}\right)=? \\ $$ Answered by mahdipoor last updated on 09/Apr/23 $${f}\left({n}+\mathrm{1}\right)=\left[{f}\left({n}\right)\right]+{f}\left(\mathrm{1}\right)+{n}= \\ $$$$\left[{f}\left({n}−\mathrm{1}\right)+{f}\left(\mathrm{1}\right)+\left({n}−\mathrm{1}\right)\right]+{f}\left(\mathrm{1}\right)+{n}=… \\…

6-1-5-7-

Question Number 59615 by hhghg last updated on 12/May/19 $$\mathrm{6}+\left(\frac{\mathrm{1}}{\mathrm{5}}×\mathrm{7}\right) \\ $$ Answered by Forkum Michael Choungong last updated on 12/May/19 $$=\frac{\mathrm{6}}{\mathrm{1}}+\frac{\mathrm{7}}{\mathrm{5}} \\ $$$$=\frac{\mathrm{30}+\mathrm{7}}{\mathrm{5}} \\…

1-1-7-1-1-14-

Question Number 59614 by hhghg last updated on 12/May/19 $$\mathrm{1}\frac{\mathrm{1}}{\mathrm{7}}+\mathrm{1}\frac{\mathrm{1}}{\mathrm{14}} \\ $$ Answered by Forkum Michael Choungong last updated on 12/May/19 $$=\:\mathrm{2}\frac{\mathrm{2}+\mathrm{1}}{\mathrm{14}} \\ $$$$=\:\mathrm{2}\frac{\mathrm{3}}{\mathrm{14}} \\…

If-x-R-a-1-a-2-a-3-b-1-b-2-b-3-gt-0-Then-prove-that-a-1-sin-2-x-b-1-cos-2-x-a-2-sin-2-x-b-2-cos-2-x-a-3-sin-2-x-b-3-cos-2-x-a-1-a-2-a-3-sin-2

Question Number 190677 by Shrinava last updated on 08/Apr/23 $$\mathrm{If}\:\:\mathrm{x}\:\in\:\mathbb{R} \\ $$$$\:\:\:\:\:\mathrm{a}_{\mathrm{1}} ,\mathrm{a}_{\mathrm{2}} ,\mathrm{a}_{\mathrm{3}} \:,\:\mathrm{b}_{\mathrm{1}} ,\mathrm{b}_{\mathrm{2}} ,\mathrm{b}_{\mathrm{3}} \:>\:\mathrm{0} \\ $$$$\mathrm{Then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{a}_{\mathrm{1}} ^{\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:\mathrm{b}_{\mathrm{1}}…

Suppose-a-b-c-are-nonzero-real-numbers-satisfying-ab-bc-ca-3-abc-a-b-c-3-Provd-that-a-b-c-must-be-terms-of-a-Geometric-Progession-

Question Number 125136 by Snail last updated on 08/Dec/20 $${Suppose}\:{a},{b},{c}\:{are}\:{nonzero}\:{real}\:{numbers} \\ $$$${satisfying}\:\left({ab}+{bc}+{ca}\right)^{\mathrm{3}} ={abc}\left({a}+{b}+{c}\right)^{\mathrm{3}} . \\ $$$${Provd}\:{that}\:{a},{b},{c}\:{must}\:{be}\:{terms}\:{of}\:{a}\:{Geometric} \\ $$$${Progession} \\ $$$$ \\ $$ Commented by Snail…

Let-a-b-c-complex-numbers-such-that-the-roots-of-the-equation-ax-2-bx-c-0-have-same-modulus-Prove-that-a-0-iff-b-0-

Question Number 125131 by Snail last updated on 03/Jun/21 $${Let}\:{a},{b},{c}\in\:{complex}\:{numbers}\:{such}\:{that}\:{the}\:{roots} \\ $$$${of}\:{the}\:{equation}\:{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}\:{have}\:{same}\:{modulus} \\ $$$${Prove}\:{that}\:{a}=\mathrm{0}\:{iff}\:{b}=\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Prove-that-cos-pi-9-1-3-cos-2pi-9-1-3-cos-4pi-9-1-3-3-3-2-9-1-3-1-3-

Question Number 190659 by Shrinava last updated on 08/Apr/23 $$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\frac{\pi}{\mathrm{9}}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{9}}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{9}}} \\ $$$$=\:\sqrt[{\mathrm{3}}]{\mathrm{3}\:−\:\frac{\mathrm{3}}{\mathrm{2}}\:\sqrt[{\mathrm{3}}]{\mathrm{9}}}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com