Question Number 123894 by john_santu last updated on 29/Nov/20 Answered by mr W last updated on 29/Nov/20 $${nn}!=\left({n}+\mathrm{1}\right){n}!−{n}!=\left({n}+\mathrm{1}\right)!−{n}! \\ $$$$\Rightarrow{a}_{{n}} =\left({n}+\mathrm{1}\right)!−\mathrm{1} \\ $$$$\frac{{n}}{\left({n}+\mathrm{1}\right)!}=\frac{{n}+\mathrm{1}}{\left({n}+\mathrm{1}\right)!}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!}=\frac{\mathrm{1}}{{n}!}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!} \\ $$$$\Rightarrow{b}_{{n}}…
Question Number 123886 by Ar Brandon last updated on 29/Nov/20 $$\mathrm{Let}\:\overset{−} {{l}z}+{l}\overset{−} {{z}}+{m}=\mathrm{0}\:\mathrm{be}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{in}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{plane} \\ $$$$\mathrm{and}\:{P}\left({z}_{\mathrm{0}} \right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{point}\:\mathrm{in}\:\mathrm{the}\:\mathrm{plane}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{line}\:\mathrm{passing}\:\mathrm{through}\:{P}\left({z}_{\mathrm{0}} \right)\:\mathrm{and}\:\mathrm{perpendicular} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{given}\:\mathrm{line}\:\mathrm{is}\:\_\_\_ \\ $$ Answered by…
Question Number 189417 by sonukgindia last updated on 16/Mar/23 Answered by mehdee42 last updated on 16/Mar/23 $$\left(\mathrm{2}^{\mathrm{3141}} \right)^{\mathrm{2}} +\left(\mathrm{2}^{{x}} \right)^{\mathrm{2}} +\left(\mathrm{2}^{\mathrm{1618}} \right)^{\mathrm{2}} =\left(\mathrm{2}^{{a}} +\mathrm{2}^{{b}} \right)^{\mathrm{2}}…
Question Number 189407 by a.lgnaoui last updated on 15/Mar/23 $${determiner}\:{l}\:{heure}\:{de}\: \\ $$$${depart}\:{par}\:\:{un}\:{auto}\:{qui}\: \\ $$$${part}\:{pour}\:{rejiindre}\:{la} \\ $$$${gare}\:\:{B}\:{juste}\:{a}\:{l}'\:{arrivee} \\ $$$${du}\:{train}\:\:{partant}\:{a}\:\mathrm{7}{h},{de}\:{la}\:{ville}\:{A} \\ $$$${vers}\:{la}\:{ville}\:{B}\:{a}\:{vitesse}\:{de}\: \\ $$$$\mathrm{180}{km}/{h}.? \\ $$$$ \\…
Question Number 123824 by Snail last updated on 28/Nov/20 $${Show}\:{that}\:{for}\:{all}\:{real}\:{numbers}\:\left({x}/{y}/{z}\right)\:{satisfying}\:\: \\ $$$${x}+{y}+{z}=\mathrm{0}\:{and}\:{xy}\:+{yz}+{zx}=−\mathrm{3}\:\:\:{the}\:{value}\:{of} \\ $$$${expression}\:{x}^{\mathrm{3}} {y}+{y}^{\mathrm{3}} {z}\:+{z}^{\mathrm{3}} {x}\:\:\:{is}\:{a}\:{constant} \\ $$ Commented by Snail last updated on…
Question Number 58248 by tanmay last updated on 20/Apr/19 $${leg}\:{A}_{\mathrm{1}} ,{A}_{\mathrm{2}} ,…{A}_{{n}} \:{and}\:{H}_{\mathrm{1}} ,{H}_{\mathrm{2}} ,…{H}_{{n}} \:{are}\:{n}\:{A}.{M}'{S}\: \\ $$$${and}\:{H}.{M}'{S}\:{respectively}\:{between}\:{a}\:{and}\:{b} \\ $$$${prove}\:{that}\:{A}_{{r}} {H}_{{n}−{r}+\mathrm{1}} ={ab} \\ $$$$\:{n}\geqslant{r}\geqslant\mathrm{1} \\…
Question Number 58246 by tanmay last updated on 20/Apr/19 $${show}\:{that} \\ $$$${P}={x}^{\mathrm{9999}} +{x}^{\mathrm{8888}} +{x}^{\mathrm{7777}} +{x}^{\mathrm{6666}} +{x}^{\mathrm{5555}} +{x}^{\mathrm{4444}} +{x}^{\mathrm{3333}} +{x}^{\mathrm{2222}} +{x}^{\mathrm{1111}} +\mathrm{1} \\ $$$${Q}={x}^{\mathrm{9}} +{x}^{\mathrm{8}} +{x}^{\mathrm{7}}…
Question Number 189302 by mnjuly1970 last updated on 14/Mar/23 $$ \\ $$$$\:\:\:\:{Q}:\:\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{the}\:\:\mathrm{solutions}\:\:\mathrm{for}\:: \\ $$$$ \\ $$$$\:\:\left(\:{x}_{\:\mathrm{1}} \:+\:{x}_{\:\mathrm{2}} \:\right)^{\:\mathrm{3}} \:+\:{x}_{\:\mathrm{3}} \:+\:{x}_{\:\mathrm{4}} \:+\:{x}_{\:\mathrm{5}} \:=\mathrm{11} \\…
Question Number 123746 by ajfour last updated on 27/Nov/20 Commented by Dwaipayan Shikari last updated on 27/Nov/20 $${What}\:{is}\:{the}\:{question}\:{sir}? \\ $$ Terms of Service Privacy Policy…
Question Number 58210 by salaw2000 last updated on 19/Apr/19 $$\mathrm{find}\:\mathrm{two}\:\mathrm{possible}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left.\mathrm{1}\right)\:\:\mathrm{xy}=\frac{\mathrm{x}}{\mathrm{y}}=\mathrm{x}−\mathrm{y} \\ $$$$\left.\mathrm{2}\right)\mathrm{xy}=\frac{\mathrm{2x}}{\mathrm{y}}=\mathrm{3}\left(\mathrm{x}−\mathrm{y}\right) \\ $$$$\left.\mathrm{3}\right)\:\:\mathrm{xy}=\frac{\mathrm{x}}{\mathrm{y}}=\mathrm{2}\left(\mathrm{x}−\mathrm{y}\right). \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\…