Menu Close

Category: Algebra

Question-123894

Question Number 123894 by john_santu last updated on 29/Nov/20 Answered by mr W last updated on 29/Nov/20 $${nn}!=\left({n}+\mathrm{1}\right){n}!−{n}!=\left({n}+\mathrm{1}\right)!−{n}! \\ $$$$\Rightarrow{a}_{{n}} =\left({n}+\mathrm{1}\right)!−\mathrm{1} \\ $$$$\frac{{n}}{\left({n}+\mathrm{1}\right)!}=\frac{{n}+\mathrm{1}}{\left({n}+\mathrm{1}\right)!}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!}=\frac{\mathrm{1}}{{n}!}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!} \\ $$$$\Rightarrow{b}_{{n}}…

Let-l-z-lz-m-0-be-a-straight-line-in-the-complex-plane-and-P-z-0-be-a-point-in-the-plane-Then-the-equation-of-the-line-passing-through-P-z-0-and-perpendicular-to-the-given-line-is-

Question Number 123886 by Ar Brandon last updated on 29/Nov/20 $$\mathrm{Let}\:\overset{−} {{l}z}+{l}\overset{−} {{z}}+{m}=\mathrm{0}\:\mathrm{be}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{in}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{plane} \\ $$$$\mathrm{and}\:{P}\left({z}_{\mathrm{0}} \right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{point}\:\mathrm{in}\:\mathrm{the}\:\mathrm{plane}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{line}\:\mathrm{passing}\:\mathrm{through}\:{P}\left({z}_{\mathrm{0}} \right)\:\mathrm{and}\:\mathrm{perpendicular} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{given}\:\mathrm{line}\:\mathrm{is}\:\_\_\_ \\ $$ Answered by…

Question-189417

Question Number 189417 by sonukgindia last updated on 16/Mar/23 Answered by mehdee42 last updated on 16/Mar/23 $$\left(\mathrm{2}^{\mathrm{3141}} \right)^{\mathrm{2}} +\left(\mathrm{2}^{{x}} \right)^{\mathrm{2}} +\left(\mathrm{2}^{\mathrm{1618}} \right)^{\mathrm{2}} =\left(\mathrm{2}^{{a}} +\mathrm{2}^{{b}} \right)^{\mathrm{2}}…

determiner-l-heure-de-depart-par-un-auto-qui-part-pour-rejiindre-la-gare-B-juste-a-l-arrivee-du-train-partant-a-7h-de-la-ville-A-vers-la-ville-B-a-vitesse-de-180km-h-

Question Number 189407 by a.lgnaoui last updated on 15/Mar/23 $${determiner}\:{l}\:{heure}\:{de}\: \\ $$$${depart}\:{par}\:\:{un}\:{auto}\:{qui}\: \\ $$$${part}\:{pour}\:{rejiindre}\:{la} \\ $$$${gare}\:\:{B}\:{juste}\:{a}\:{l}'\:{arrivee} \\ $$$${du}\:{train}\:\:{partant}\:{a}\:\mathrm{7}{h},{de}\:{la}\:{ville}\:{A} \\ $$$${vers}\:{la}\:{ville}\:{B}\:{a}\:{vitesse}\:{de}\: \\ $$$$\mathrm{180}{km}/{h}.? \\ $$$$ \\…

Show-that-for-all-real-numbers-x-y-z-satisfying-x-y-z-0-and-xy-yz-zx-3-the-value-of-expression-x-3-y-y-3-z-z-3-x-is-a-constant-

Question Number 123824 by Snail last updated on 28/Nov/20 $${Show}\:{that}\:{for}\:{all}\:{real}\:{numbers}\:\left({x}/{y}/{z}\right)\:{satisfying}\:\: \\ $$$${x}+{y}+{z}=\mathrm{0}\:{and}\:{xy}\:+{yz}+{zx}=−\mathrm{3}\:\:\:{the}\:{value}\:{of} \\ $$$${expression}\:{x}^{\mathrm{3}} {y}+{y}^{\mathrm{3}} {z}\:+{z}^{\mathrm{3}} {x}\:\:\:{is}\:{a}\:{constant} \\ $$ Commented by Snail last updated on…

leg-A-1-A-2-A-n-and-H-1-H-2-H-n-are-n-A-M-S-and-H-M-S-respectively-between-a-and-b-prove-that-A-r-H-n-r-1-ab-n-r-1-

Question Number 58248 by tanmay last updated on 20/Apr/19 $${leg}\:{A}_{\mathrm{1}} ,{A}_{\mathrm{2}} ,…{A}_{{n}} \:{and}\:{H}_{\mathrm{1}} ,{H}_{\mathrm{2}} ,…{H}_{{n}} \:{are}\:{n}\:{A}.{M}'{S}\: \\ $$$${and}\:{H}.{M}'{S}\:{respectively}\:{between}\:{a}\:{and}\:{b} \\ $$$${prove}\:{that}\:{A}_{{r}} {H}_{{n}−{r}+\mathrm{1}} ={ab} \\ $$$$\:{n}\geqslant{r}\geqslant\mathrm{1} \\…

show-that-P-x-9999-x-8888-x-7777-x-6666-x-5555-x-4444-x-3333-x-2222-x-1111-1-Q-x-9-x-8-x-7-x-6-x-5-x-4-x-3-x-2-x-1-prove-P-is-divisible-by-Q-

Question Number 58246 by tanmay last updated on 20/Apr/19 $${show}\:{that} \\ $$$${P}={x}^{\mathrm{9999}} +{x}^{\mathrm{8888}} +{x}^{\mathrm{7777}} +{x}^{\mathrm{6666}} +{x}^{\mathrm{5555}} +{x}^{\mathrm{4444}} +{x}^{\mathrm{3333}} +{x}^{\mathrm{2222}} +{x}^{\mathrm{1111}} +\mathrm{1} \\ $$$${Q}={x}^{\mathrm{9}} +{x}^{\mathrm{8}} +{x}^{\mathrm{7}}…

Q-find-the-number-of-the-solutions-for-x-1-x-2-3-x-3-x-4-x-5-11-Hint-x-i-Z-0-

Question Number 189302 by mnjuly1970 last updated on 14/Mar/23 $$ \\ $$$$\:\:\:\:{Q}:\:\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{the}\:\:\mathrm{solutions}\:\:\mathrm{for}\:: \\ $$$$ \\ $$$$\:\:\left(\:{x}_{\:\mathrm{1}} \:+\:{x}_{\:\mathrm{2}} \:\right)^{\:\mathrm{3}} \:+\:{x}_{\:\mathrm{3}} \:+\:{x}_{\:\mathrm{4}} \:+\:{x}_{\:\mathrm{5}} \:=\mathrm{11} \\…

find-two-possible-number-such-that-1-xy-x-y-x-y-2-xy-2x-y-3-x-y-3-xy-x-y-2-x-y-

Question Number 58210 by salaw2000 last updated on 19/Apr/19 $$\mathrm{find}\:\mathrm{two}\:\mathrm{possible}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left.\mathrm{1}\right)\:\:\mathrm{xy}=\frac{\mathrm{x}}{\mathrm{y}}=\mathrm{x}−\mathrm{y} \\ $$$$\left.\mathrm{2}\right)\mathrm{xy}=\frac{\mathrm{2x}}{\mathrm{y}}=\mathrm{3}\left(\mathrm{x}−\mathrm{y}\right) \\ $$$$\left.\mathrm{3}\right)\:\:\mathrm{xy}=\frac{\mathrm{x}}{\mathrm{y}}=\mathrm{2}\left(\mathrm{x}−\mathrm{y}\right). \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\…