Question Number 122861 by MJS_new last updated on 20/Nov/20 $$\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{formula}\:\mathrm{for}\:\mathrm{this}? \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} +{an}+{b}} \\ $$ Commented by Dwaipayan Shikari last updated on 20/Nov/20…
Question Number 122857 by bemath last updated on 20/Nov/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 122854 by Study last updated on 20/Nov/20 Answered by mathmax by abdo last updated on 20/Nov/20 $$\left(−\mathrm{2}\right)^{\sqrt{\mathrm{2}}} =\mathrm{e}^{\sqrt{\mathrm{2}}\mathrm{ln}\left(−\mathrm{2}\right)} \:=\mathrm{e}^{\sqrt{\mathrm{2}}\left(\mathrm{ln}\left(−\mathrm{1}\right)+\mathrm{ln}\left(\mathrm{2}\right)\right)} \:=\mathrm{e}^{\sqrt{\mathrm{2}}\left(\mathrm{i}\pi+\mathrm{ln2}\right)} \\ $$$$=\:\mathrm{e}^{\sqrt{\mathrm{2}}\mathrm{ln}\left(\mathrm{2}\right)+\mathrm{i}\sqrt{\mathrm{2}}\pi} \:=\mathrm{e}^{\sqrt{\mathrm{2}}\mathrm{ln}\left(\mathrm{2}\right)}…
Question Number 188379 by Shrinava last updated on 28/Feb/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 188366 by a.lgnaoui last updated on 28/Feb/23 $${xlnx}=\mathrm{7}\:\:\:\:\: \\ $$$${x}? \\ $$ Answered by mr W last updated on 28/Feb/23 $${e}^{\mathrm{ln}\:{x}} \mathrm{ln}\:{x}=\mathrm{7} \\…
Question Number 122821 by bemath last updated on 19/Nov/20 $$\:{Given}\:\begin{cases}{{x}^{\mathrm{ln}\:{x}+\mathrm{ln}\:{y}} \:=\:\mathrm{5}}\\{{y}^{\mathrm{ln}\:{x}+\mathrm{ln}\:{y}} \:=\:\mathrm{2}}\end{cases} \\ $$$${then}\:\begin{cases}{{x}=?}\\{{y}=?}\end{cases} \\ $$ Answered by liberty last updated on 20/Nov/20 $$\:\begin{cases}{\mathrm{ln}\:\left({xy}\right).\mathrm{ln}\:\left({x}\right)\:=\:\mathrm{ln}\:\left(\mathrm{5}\right)\:}\\{\mathrm{ln}\:\left({xy}\right).\mathrm{ln}\:\left({y}\right)\:=\:\mathrm{ln}\:\left(\mathrm{2}\right)}\end{cases} \\…
Question Number 188343 by Shrinava last updated on 28/Feb/23 $$\mathrm{Find}:\:\Omega\:=\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}\:-\:\frac{\mathrm{5}\:-\:\sqrt{\mathrm{25}\:-\:\mathrm{x}^{\mathrm{2}} }}{\mathrm{x}}\:\right)^{\frac{\mathrm{5}\boldsymbol{\mathrm{n}}}{\boldsymbol{\mathrm{x}}}} \:\right) \\ $$ Answered by SEKRET last updated on 28/Feb/23 $$\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}}…
Question Number 188327 by HeferH last updated on 28/Feb/23 $${if}\:{the}\:{roots}\:{of}\:\:\mathrm{2}{x}^{\mathrm{2}} \:−{xn}\:=\:\mathrm{2}{x}\:+\:{m}\:\:{is}\:\mathrm{5}, \\ $$$$\:{then}\:{find}\::\:\mathrm{4}{n}\:+\:{m}\:−\:\mathrm{5}\: \\ $$$$\: \\ $$ Answered by Rasheed.Sindhi last updated on 28/Feb/23 $$\mathrm{2}{x}^{\mathrm{2}}…
Question Number 57251 by ANTARES VY last updated on 01/Apr/19 Answered by tanmay.chaudhury50@gmail.com last updated on 01/Apr/19 $${T}_{{n}} =\frac{{n}\left({n}−\mathrm{1}\right)}{\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}+\frac{\mathrm{1}}{\left({n}−\mathrm{2}\right)!}} \\ $$$$=\frac{{n}\left({n}−\mathrm{1}\right)}{\frac{\mathrm{1}+{n}−\mathrm{1}}{\left({n}−\mathrm{1}\right)!}}\rightarrow\left({n}−\mathrm{1}\right)\left({n}−\mathrm{1}\right)! \\ $$$$\left[\underset{{n}=\mathrm{3}} {\overset{\mathrm{2019}} {\sum}}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{1}\right)!\right]+\mathrm{2}\rightarrow\boldsymbol{{S}}+\mathrm{2}…
Question Number 57245 by ANTARES VY last updated on 01/Apr/19 $$\frac{\boldsymbol{\mathrm{a}}^{\mathrm{8}} +\boldsymbol{\mathrm{a}}^{\mathrm{4}} +\mathrm{1}}{\boldsymbol{\mathrm{a}}^{\mathrm{4}} +\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\mathrm{1}}=? \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 01/Apr/19 $${a}^{\mathrm{8}}…