Question Number 55771 by Joel578 last updated on 04/Mar/19 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{solutions}\:\left({a},\:{b},\:{c}\right)\:\mathrm{from} \\ $$$$\mathrm{Diophantine}\:\mathrm{equation}\:\:\mathrm{2}^{{a}} \:+\:\mathrm{5}^{{b}} \:=\:{c}^{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 121257 by benjo_mathlover last updated on 06/Nov/20 $$\mathrm{If}\:\mathrm{today}\:\mathrm{is}\:\mathrm{June}\:\mathrm{17},\mathrm{2009}\:\mathrm{and}\:\mathrm{George} \\ $$$$\mathrm{was}\:\mathrm{born}\:\mathrm{on}\:\mathrm{November}\:\mathrm{25},\:\mathrm{1967}.\: \\ $$$$\mathrm{How}\:\mathrm{old}\:\mathrm{is}\:\mathrm{George}? \\ $$ Commented by bemath last updated on 06/Nov/20 I forgot the formula, once told by sir mjs Commented…
Question Number 121246 by benjo_mathlover last updated on 06/Nov/20 $$\:\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{49}} {\sum}}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{k}+\sqrt{\mathrm{k}^{\mathrm{2}} −\mathrm{1}}}}\:? \\ $$ Answered by liberty last updated on 06/Nov/20 $$\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{k}+\sqrt{\mathrm{k}^{\mathrm{2}} −\mathrm{1}}}}\:=\:\frac{\mathrm{1}}{\:\sqrt{\left(\sqrt{\frac{\mathrm{k}+\mathrm{1}}{\mathrm{2}}}+\sqrt{\frac{\mathrm{k}−\mathrm{1}}{\mathrm{2}}}\right)^{\mathrm{2}} }}…
Question Number 186772 by mathlove last updated on 10/Feb/23 $$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 55685 by tm888 last updated on 02/Mar/19 $${proof}\:{that}\: \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{a}_{{i}} }{{a}_{{i}} −{x}}=\mathrm{2015}\:{has}\:{exactly}\:{n}\:{real}\: \\ $$$${roots}.{o}<{a}_{\mathrm{1}} ….<{a}_{{n}} \\ $$ Answered by mr W…
Question Number 55673 by gunawan last updated on 01/Mar/19 $${f}\left({z}\right)={z}\:\mathrm{Re}\left({z}\right)+\bar {{z}}\:\mathrm{Im}\left({z}\right)\:+\bar {{z}}\: \\ $$$${f}'\left({z}_{\mathrm{0}} \right)=… \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 55671 by gunawan last updated on 01/Mar/19 $$\mathrm{Let}\:\mathrm{z}\:\in\:\mathbb{C}\:,\:\mathrm{so}\:\mid\mathrm{1}+{z}^{\mathrm{2}} \mid<\mathrm{1}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{2}\mid\mathrm{1}+{z}^{\mathrm{2}} \mid\geqslant\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 121199 by I want to learn more last updated on 05/Nov/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 186732 by mr W last updated on 09/Feb/23 Answered by mr W last updated on 09/Feb/23 $${let}'{s}\:{generally}\:{find}\:{the}\:{maximum}\:{of} \\ $$$${S}={a}_{\mathrm{1}} +{a}_{\mathrm{2}} +…+{a}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}}…
Question Number 121170 by pooooop last updated on 05/Nov/20 $$\:\:\:\:\:\:\left(\boldsymbol{{a}};\boldsymbol{{b}};\boldsymbol{{c}}\right)\in\forall \\ $$$$\:\boldsymbol{{a}}^{\boldsymbol{{a}}} \centerdot\:\boldsymbol{{b}}^{\boldsymbol{{b}}} \centerdot\:\boldsymbol{{c}}^{\boldsymbol{{c}}} \geqslant\left(\boldsymbol{{abc}}\right)^{\frac{\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}}{\mathrm{3}}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com