Menu Close

Category: Algebra

Known-analytic-function-f-z-2-z-2-z-z-4-and-written-as-f-z-n-0-a-n-z-1-n-The-value-of-a-100-is-

Question Number 55069 by gunawan last updated on 17/Feb/19 $$\mathrm{Known}\:\mathrm{analytic}\:\mathrm{function} \\ $$$${f}\left({z}\right)=\frac{\mathrm{2}\left({z}−\mathrm{2}\right)}{{z}\left({z}−\mathrm{4}\right)} \\ $$$$\mathrm{and}\:\mathrm{written}\:\mathrm{as}\:{f}\left({z}\right)=\underset{{n}=\mathrm{0}} {\overset{\propto} {\Sigma}}\:{a}_{{n}} \left({z}−\mathrm{1}\right)^{{n}} \\ $$$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:{a}_{\mathrm{100}} \:\mathrm{is}… \\ $$ Commented by maxmathsup…

Find-the-range-of-values-of-x-for-which-the-expansion-of-the-binomial-2-3x-4-is-valid-I-need-help-with-explanation-please-

Question Number 120601 by Don08q last updated on 01/Nov/20 $$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{x}\:\mathrm{for}\: \\ $$$$\:\mathrm{which}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{binomial} \\ $$$$\:\left(\mathrm{2}\:−\:\mathrm{3}{x}\right)^{−\mathrm{4}} \:\mathrm{is}\:\mathrm{valid}.\: \\ $$$$\:{I}\:{need}\:{help}\:{with}\:{explanation}\:{please} \\ $$ Answered by Ar Brandon last updated…

Question-186124

Question Number 186124 by Rupesh123 last updated on 01/Feb/23 Commented by MJS_new last updated on 01/Feb/23 $$\mathrm{3}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} =\mathrm{25}\:\Rightarrow\:\mathrm{I}\:\mathrm{guess}\:{y}\in\left\{\mathrm{3},\:\mathrm{4}\right\} \\ $$$$\mathrm{with}\:{y}=\mathrm{4}\:\Rightarrow\:{x}=\frac{\mathrm{215}}{\mathrm{106}}\pm\frac{\mathrm{27}\sqrt{\mathrm{17}}}{\mathrm{106}}\mathrm{i} \\ $$$$\Rightarrow\:{y}=\mathrm{3} \\ $$…

and-are-2-roots-of-eq-ax-2-bx-c-0-with-conditions-2-b-2-a-find-c-in-terms-of-a-and-b-

Question Number 55039 by behi83417@gmail.com last updated on 16/Feb/19 $$\alpha\:{and}\:\beta,{are}\:\mathrm{2}\:{roots}\:{of}\:{eq}: \\ $$$$\:\:\:\:{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}\:{with}\:{conditions}: \\ $$$$\:\:\:\:\begin{cases}{\alpha^{\mathrm{2}} =\beta+{b}}\\{\beta^{\mathrm{2}} =\alpha+{a}}\end{cases} \\ $$$${find}:\:\:\boldsymbol{{c}}\:{in}\:{terms}\:{of}:\:\boldsymbol{{a}}\:\:{and}\:\:\boldsymbol{{b}}. \\ $$ Commented by mr W…