Menu Close

Category: Algebra

Solve-for-x-1-x-x-1-2-x-x-2-x-1-

Question Number 54582 by Tawa1 last updated on 07/Feb/19 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}\:+\:\sqrt{\mathrm{x}}\:+\:\mathrm{1}}}\:+\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{x}\:+\:\sqrt{\mathrm{x}}\:−\:\mathrm{2}}}\:\:=\:\sqrt{\mathrm{x}\:+\:\mathrm{1}} \\ $$ Commented by MJS last updated on 07/Feb/19 $$\mathrm{with}\:{t}=\sqrt{{x}}\:\mathrm{and}\:\mathrm{squaring}\:\mathrm{etc}.\:\mathrm{this}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{a} \\ $$$$\mathrm{polynome}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{12} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{only}\:\mathrm{approximate}. \\…

4x-2-4x-2-1-y-4y-2-4y-2-1-z-4z-2-4z-2-1-x-where-x-y-z-0-

Question Number 120110 by benjo_mathlover last updated on 29/Oct/20 $$\begin{cases}{\frac{\mathrm{4}{x}^{\mathrm{2}} }{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}\:=\:{y}}\\{\frac{\mathrm{4}{y}^{\mathrm{2}} }{\mathrm{4}{y}^{\mathrm{2}} +\mathrm{1}}\:=\:{z}\:}\\{\frac{\mathrm{4}{z}^{\mathrm{2}} }{\mathrm{4}{z}^{\mathrm{2}} +\mathrm{1}}\:=\:{x}}\end{cases} \\ $$$${where}\:{x},{y},{z}\:\neq\:\mathrm{0}\: \\ $$ Answered by bemath last updated…

x-4-ax-2-a-2-2-x-6-1-solve-for-x-a-R-

Question Number 120108 by behi83417@gmail.com last updated on 29/Oct/20 $$\left(\boldsymbol{\mathrm{x}}^{\mathrm{4}} +\boldsymbol{\mathrm{ax}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}^{\mathrm{2}} \right)^{\mathrm{2}} +\boldsymbol{\mathrm{x}}^{\mathrm{6}} =\mathrm{1} \\ $$$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}:\:\:\mathrm{x},\mathrm{a}\in\boldsymbol{\mathrm{R}} \\ $$ Terms of Service Privacy Policy Contact:…

Question-54562

Question Number 54562 by Meritguide1234 last updated on 06/Feb/19 Answered by JDamian last updated on 07/Feb/19 $$\sqrt{\mathrm{7}+\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{4}\sqrt{\mathrm{9}\sqrt{\mathrm{3}}−\mathrm{15}}} \\ $$$$\sqrt{\mathrm{7}+\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{4}\sqrt{\mathrm{3}\left(\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{5}\right)}} \\ $$$$\sqrt{\mathrm{7}+\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{2}×\mathrm{2}\sqrt{\mathrm{3}}×\sqrt{\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{5}}} \\ $$$$\sqrt{\mathrm{12}+\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{5}+\mathrm{2}×\mathrm{2}\sqrt{\mathrm{3}}×\sqrt{\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{5}}} \\ $$$$…

Question-185624

Question Number 185624 by mathlove last updated on 24/Jan/23 Answered by MJS_new last updated on 24/Jan/23 $${a}_{\mathrm{1}} =\mathrm{3}^{\mathrm{1}/\mathrm{2}} \\ $$$${a}_{\mathrm{2}} =\left(\mathrm{3}^{\mathrm{1}/\mathrm{2}} \right)^{\mathrm{2}/\mathrm{3}} =\mathrm{3}^{\mathrm{1}/\mathrm{3}} \\ $$$${a}_{\mathrm{3}}…

Prove-that-z-2-1-z-2-1-i-tan-where-z-cos-i-sin-

Question Number 54543 by Tawa1 last updated on 05/Feb/19 $$\mathrm{Prove}\:\mathrm{that}:\:\:\:\frac{\mathrm{z}^{\mathrm{2}} \:−\:\mathrm{1}}{\mathrm{z}^{\mathrm{2}} \:+\:\mathrm{1}}\:\:=\:\:\mathrm{i}\:\mathrm{tan}\left(\theta\right) \\ $$$$\mathrm{where}\:\:\:\:\:\mathrm{z}\:\:=\:\:\mathrm{cos}\left(\theta\right)\:+\:\mathrm{i}\:\mathrm{sin}\left(\theta\right) \\ $$ Commented by maxmathsup by imad last updated on 06/Feb/19…