Menu Close

Category: Algebra

Solve-the-equation-x-x-2-3x-20-

Question Number 185315 by Shrinava last updated on 20/Jan/23 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\mathrm{x}!\:=\:\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{3x}\:+\:\mathrm{20} \\ $$ Answered by Rasheed.Sindhi last updated on 20/Jan/23 $${f}\left({x}\right)=\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{3x}\:+\:\mathrm{20}−{x}! \\…

Question-119774

Question Number 119774 by rajesh4661kumar@gmail.com last updated on 26/Oct/20 Answered by $@y@m last updated on 27/Oct/20 $$\left(\mathrm{40}+\mathrm{50}−\mathrm{2}\right)×\mathrm{2}×\mathrm{100}={Rs}.\mathrm{17600} \\ $$ Commented by rajesh4661kumar@gmail.com last updated on…

For-any-integer-n-let-I-n-be-the-interval-n-n-1-Define-R-x-y-R-both-x-y-I-n-for-some-n-Z-Then-R-is-A-reflexive-on-R-B-symmetric-C-transitive-D-an-equivalence-relation-

Question Number 119757 by Ar Brandon last updated on 26/Oct/20 $$\mathrm{For}\:\mathrm{any}\:\mathrm{integer}\:{n},\:\mathrm{let}\:{I}_{{n}} \:\mathrm{be}\:\mathrm{the}\:\mathrm{interval}\:\left({n},\:{n}+\mathrm{1}\right). \\ $$$$\mathrm{Define} \\ $$$$\:\:\:\:\:\:\:\mathcal{R}=\left\{\left(\mathrm{x},\:\mathrm{y}\right)\in\mathbb{R}\mid\mathrm{both}\:\mathrm{x},\:\mathrm{y}\:\in\:{I}_{{n}} \:\mathrm{for}\:\mathrm{some}\:{n}\in\mathbb{Z}\right\} \\ $$$$\mathrm{Then}\:\mathcal{R}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{reflexive}\:\mathrm{on}\:\mathbb{R} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{symmetric} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{transitive}…

x-x-2-1-1-x-

Question Number 185210 by mathlove last updated on 18/Jan/23 $${x}=\frac{{x}^{\mathrm{2}} +\mathrm{1}}{\alpha+\mathrm{1}}\:\:\:\:\:\:\:\:\:\:{x}=? \\ $$ Commented by Frix last updated on 18/Jan/23 $$\mathrm{Simply}\:\mathrm{transform}\:\mathrm{it}\:\mathrm{to} \\ $$$${x}^{\mathrm{2}} +{px}+{q}=\mathrm{0} \\…

1-1-2-1-3-1-4-1-

Question Number 185204 by Ml last updated on 18/Jan/23 $$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}+\frac{\mathrm{1}}{\mathrm{3}+\frac{\mathrm{1}}{\mathrm{4}+\frac{\mathrm{1}}{\ddots}}}}=??? \\ $$ Commented by MJS_new last updated on 18/Jan/23 $$\mathrm{you}\:\mathrm{could}\:\mathrm{type}\:?^{\mathrm{3}} \:\mathrm{instead}\:\mathrm{of}\:???;\:\mathrm{if}\:\mathrm{you}\:\mathrm{feel} \\ $$$$\mathrm{you}\:\mathrm{can}'\mathrm{t}\:\mathrm{live}\:\mathrm{without}\:\mathrm{an}\:\mathrm{answer}\:\mathrm{just}\:\mathrm{type}\:?^{\infty} \\ $$$$\left[\mathrm{short}\:\mathrm{for}\:\underset{{n}\rightarrow\infty}…