Question Number 184841 by Shrinava last updated on 12/Jan/23 Answered by manolex last updated on 12/Jan/23 $${y}=\mathrm{2}\sqrt{\mathrm{2}}−\sqrt{\mathrm{7}}\:\:\::\:\:{y}=\mathrm{0}.\mathrm{18}:\:\:\:\:\:\mathrm{0}<{y}<\mathrm{1} \\ $$$${y}^{\mathrm{2}} =\mathrm{15}−\mathrm{4}\sqrt{\mathrm{14}} \\ $$$$\frac{\mathrm{1}}{{y}}=\mathrm{2}\sqrt{\mathrm{2}}+\sqrt{\mathrm{7}} \\ $$$${tenemos} \\…
Question Number 53775 by maxmathsup by imad last updated on 25/Jan/19 $${let}\:\:{A}\:=\:\begin{pmatrix}{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{−\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:\:{P}\:{inversible}\:{and}\:{D}\:{diagoanal}\:{in}\:{ordre}\:{to}\:{have} \\ $$$${A}\:={PDP}^{−\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}^{{n}} \:\:{with}\:{n}\:{integr}\:{nstural} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{e}^{{t}\:{A}} \:\:\:{with}\:{t}\:\in\:{R}\:\: \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{e}^{−{A}} \:\:.…
Question Number 184843 by Shrinava last updated on 12/Jan/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 53770 by Tawa1 last updated on 25/Jan/19 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{he}\right)^{\mathrm{2}} \:\:=\:\:\mathrm{she}\:\:,\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{where}\:\:\mathrm{h},\:\mathrm{e}\:\:\mathrm{and}\:\:\mathrm{s}\:\:\mathrm{are}\:\mathrm{integers}\:. \\ $$ Answered by mr W last updated on 26/Jan/19 $${let}\:{he}={t} \\…
Question Number 119303 by bobhans last updated on 23/Oct/20 $$\:{let}\:{x},{y},{z}\:{be}\:{positive}\:{real}\:{numbers}\: \\ $$$${such}\:{that}\:{x}+{y}+{z}=\mathrm{1}.\:{Determine}\: \\ $$$${the}\:{minimum}\:{value}\:{of}\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{4}}{{y}}+\frac{\mathrm{9}}{{z}}. \\ $$ Answered by TANMAY PANACEA last updated on 23/Oct/20 $$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{4}}{{y}}+\frac{\mathrm{9}}{{z}}…
Question Number 184828 by ajfour last updated on 12/Jan/23 $${Find}\:{x}\:{in}\:{terms}\:{of}\:\:\:{c}\:\:\forall\:\mathrm{0}<{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$$\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{36}{x}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:=\left\{\mathrm{4}\left({x}^{\mathrm{3}} −{x}−{c}\right)+\mathrm{9}\left(\mathrm{7}{x}^{\mathrm{2}} +\mathrm{1}\right)\right\}^{\mathrm{2}} \\ $$ Commented by Frix last updated…
Question Number 184823 by mnjuly1970 last updated on 12/Jan/23 $$ \\ $$$$\:\:\:\mathrm{Lim}_{\:{x}\rightarrow\:\mathrm{0}^{\:+} } \:\:\frac{\:\:\mathrm{1}−\:\:\mathrm{cos}\:\left(\:\mathrm{1}−\:\mathrm{cos}\left(\sqrt{{x}}\:\right)\right)}{{x}^{\:\mathrm{4}} } \\ $$ Answered by cortano1 last updated on 12/Jan/23 $$=\:\underset{{x}\rightarrow\mathrm{0}^{+}…
Question Number 53732 by ajfour last updated on 25/Jan/19 $${f}\left({x}\right)=\frac{\left({x}+{a}\right)\left({x}+{b}\right)}{\left({x}−{a}\right)\left({x}−{b}\right)} \\ $$$${Find}\:{minimum}\:{and}\:{maximum}. \\ $$ Commented by mr W last updated on 25/Jan/19 $${at}\:{x}={a}\:{and}\:{x}={b}:\:{f}\left({x}\right)\rightarrow\pm\infty \\ $$…
Question Number 53709 by pieroo last updated on 25/Jan/19 $$\mathrm{A}\:\mathrm{supermarket}\:\mathrm{pays}\:\mathrm{its}\:\mathrm{sales}\:\mathrm{personnel} \\ $$$$\mathrm{on}\:\mathrm{a}\:\mathrm{weekly}\:\mathrm{basis}.\:\mathrm{At}\:\mathrm{the}\:\mathrm{end}\:\mathrm{of}\:\mathrm{each}\:\mathrm{week}, \\ $$$$\mathrm{each}\:\mathrm{sales}\:\mathrm{person}\:\mathrm{receives}\:\mathrm{a}\:\mathrm{basic}\: \\ $$$$\mathrm{weekly}\:\mathrm{wage}\:\mathrm{plus}\:\mathrm{bonus},\:\mathrm{which}\:\mathrm{varies} \\ $$$$\mathrm{directly}\:\mathrm{as}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{complete} \\ $$$$\mathrm{weeks}\:\mathrm{that}\:\mathrm{particular}\:\mathrm{person}\:\mathrm{has}\: \\ $$$$\mathrm{worked}\:\mathrm{in}\:\mathrm{the}\:\mathrm{shop}.\:\mathrm{At}\:\mathrm{the}\:\mathrm{end}\:\mathrm{of}\:\mathrm{her} \\ $$$$\mathrm{fourth}\:\mathrm{week}\:\mathrm{a}\:\mathrm{sales}\:\mathrm{girl}\:\mathrm{received}\:\mathrm{a}\:\mathrm{pay} \\…
Question Number 184757 by Shrinava last updated on 11/Jan/23 $$\mathrm{Which}\:\mathrm{function}\:\mathrm{has}\:\mathrm{a}\:\mathrm{crisis}\:\mathrm{point}? \\ $$$$\left.\mathrm{a}\right)\mathrm{y}=\mathrm{x}^{\mathrm{3}} +\mathrm{2x}+\mathrm{6} \\ $$$$\left.\mathrm{b}\right)\mathrm{y}=\sqrt[{\mathrm{4}}]{\mathrm{x}} \\ $$$$\left.\mathrm{c}\right)\mathrm{y}=\frac{\mathrm{15}}{\mathrm{x}} \\ $$$$\left.\mathrm{d}\right)\mathrm{y}=\mathrm{e}^{\boldsymbol{\mathrm{x}}} \\ $$$$\left.\mathrm{e}\right)\mathrm{y}=\sqrt[{\mathrm{3}}]{\mathrm{x}} \\ $$ Commented by…