Menu Close

Category: Algebra

The-number-of-surjections-of-1-2-3-4-onto-x-y-is-A-16-B-8-C-14-D-6-

Question Number 117972 by Ar Brandon last updated on 14/Oct/20 $$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{surjections}\:\mathrm{of}\:\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}\right\}\:\mathrm{onto}\:\left\{\mathrm{x},\mathrm{y}\right\}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{16}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{8}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{14}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{6} \\ $$ Answered by Lordose last updated on 14/Oct/20 $$\mathrm{N}=\:\mathrm{2}^{\mathrm{n}\left(\mathrm{A}\right)−\mathrm{1}} =\:\mathrm{2}^{\mathrm{3}} =\mathrm{8}…

Find-the-cube-root-of-26-5-3-

Question Number 52406 by Tawa1 last updated on 07/Jan/19 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{cube}\:\mathrm{root}\:\mathrm{of}\:\:\:\:\:\mathrm{26}\:+\:\mathrm{5}\sqrt{\mathrm{3}} \\ $$ Answered by MJS last updated on 07/Jan/19 $$\mathrm{no}\:\mathrm{exact}\:\mathrm{solution} \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}} \\ $$$$\left({a}+{b}\sqrt{\mathrm{3}}\right)^{\mathrm{3}} =\mathrm{26}+\mathrm{15}\sqrt{\mathrm{3}}…

Let-f-1-2-be-the-function-defined-by-f-x-x-1-x-If-g-2-1-is-a-function-such-that-g-f-x-x-for-all-x-1-Show-that-g-t-t-t-2-4-2-

Question Number 117934 by Ar Brandon last updated on 14/Oct/20 $$\mathrm{Let}\:{f}\::\:\left[\mathrm{1},\infty\right)\rightarrow\left[\mathrm{2},\infty\right)\:\mathrm{be}\:\mathrm{the}\:\mathrm{function}\:\mathrm{defined}\:\mathrm{by} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{f}\left({x}\right)={x}+\frac{\mathrm{1}}{{x}} \\ $$$$\mathrm{If}\:\mathrm{g}\::\:\left[\mathrm{2},\infty\right)\rightarrow\left[\mathrm{1},\infty\right),\:\mathrm{is}\:\mathrm{a}\:\mathrm{function}\:\mathrm{such}\:\mathrm{that}\:\left(\mathrm{g}\circ{f}\right)\left({x}\right)={x} \\ $$$$\mathrm{for}\:\mathrm{all}\:{x}\geqslant\mathrm{1}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{g}\left({t}\right)=\frac{{t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}} \\ $$ Answered by Lordose last updated…

Among-the-natural-numbers-not-greater-than-22-the-probability-that-the-modulus-of-the-difference-of-any-two-of-the-3-randomly-selected-numbers-is-greater-than-5-is-equal-to-which-of-the-following-

Question Number 183424 by Shrinava last updated on 25/Dec/22 $$\mathrm{Among}\:\mathrm{the}\:\mathrm{natural}\:\mathrm{numbers}\:\mathrm{not} \\ $$$$\mathrm{greater}\:\mathrm{than}\:\mathrm{22}\:,\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{modulus}\:\mathrm{of}\:\mathrm{the}\:\mathrm{difference}\:\mathrm{of}\:\mathrm{any}\: \\ $$$$\mathrm{two}\:\mathrm{of}\:\mathrm{the}\:\mathrm{3}\:\mathrm{randomly}\:\mathrm{selected}\:\mathrm{numbers} \\ $$$$\mathrm{is}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{5}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{which}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{following}? \\ $$$$\left.\mathrm{a}\left.\right)\left.\mathrm{1}\left.\mathrm{5}/\mathrm{22}\:\:\:\mathrm{b}\right)\mathrm{1}/\mathrm{7}\:\:\:\mathrm{c}\right)\mathrm{1}/\mathrm{22}\:\:\:\mathrm{d}\right)\mathrm{1} \\ $$ Terms…

3n-5-4n-4-7n-3-5n-2-5-n-1-There-can-be-no-residue-a-0-b-2-c-4-d-5-e-9-

Question Number 183381 by Shrinava last updated on 25/Dec/22 $$\frac{\mathrm{3n}^{\mathrm{5}} \:+\:\mathrm{4n}^{\mathrm{4}} \:−\:\mathrm{7n}^{\mathrm{3}} \:+\:\mathrm{5n}^{\mathrm{2}} \:−\:\mathrm{5}}{\mathrm{n}\:+\:\mathrm{1}} \\ $$$$\mathrm{There}\:\mathrm{can}\:\mathrm{be}\:\mathrm{no}\:\mathrm{residue}: \\ $$$$\left.\mathrm{a}\left.\right)\left.\mathrm{0}\left.\:\left.\:\:\mathrm{b}\right)\mathrm{2}\:\:\:\mathrm{c}\right)\mathrm{4}\:\:\:\mathrm{d}\right)\mathrm{5}\:\:\:\mathrm{e}\right)\mathrm{9} \\ $$ Commented by Shrinava last updated…

a-gt-0-b-gt-0-x-1-2-y-7-2-a-2-x-2-2-y-3-2-b-2-Find-a-b-min-

Question Number 183380 by Shrinava last updated on 25/Dec/22 $$\mathrm{a}>\mathrm{0}\:,\:\mathrm{b}>\mathrm{0} \\ $$$$\begin{cases}{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} \:+\:\left(\mathrm{y}−\mathrm{7}\right)^{\mathrm{2}} \:=\:\mathrm{a}^{\mathrm{2}} }\\{\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} \:+\:\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} \:=\:\mathrm{b}^{\mathrm{2}} }\end{cases} \\ $$$$\mathrm{Find}:\:\:\:\left(\mathrm{a}+\mathrm{b}\right)_{\boldsymbol{\mathrm{min}}} \:=\:? \\ $$ Commented by…

1-3-1-3-1-3-3-3-1-3-3-1-2-3-2-2x-3-2x-3-2x-2-2x-3-2x-3-3-4x-2-3-

Question Number 117828 by redouaneee last updated on 13/Oct/20 $$\left.\mathrm{1}\right)\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)\left(\sqrt{\mathrm{3}}+\mathrm{1}\right)=\sqrt{\mathrm{3}}×\sqrt{\mathrm{3}}−\sqrt{\mathrm{3}}−\mathrm{1} \\ $$$$=\mathrm{3}−\sqrt{\mathrm{3}}−\mathrm{1} \\ $$$$=\mathrm{2}−\sqrt{\mathrm{3}} \\ $$$$\left.\mathrm{2}\right)\left(\mathrm{2}{x}+\sqrt{\mathrm{3}}\right)\left(\mathrm{2}{x}−\sqrt{\mathrm{3}}\right)=\left(\mathrm{2}{x}\right)^{\mathrm{2}} −\mathrm{2}{x}\sqrt{\mathrm{3}}+\mathrm{2}{x}\sqrt{\mathrm{3}}−\mathrm{3} \\ $$$$=\mathrm{4}{x}^{\mathrm{2}} −\mathrm{3} \\ $$ Answered by MJS_new…