Menu Close

Category: Algebra

If-ax-2-bx-c-i-0-has-purely-imaginary-roots-where-a-b-c-are-non-zero-real-answer-given-a-b-2-c-I-think-question-is-wrong-since-if-z-1-and-z-2-are-roots-than-z-1-z-2-b-a-purely-imaginary-pu

Question Number 51843 by prakash jain last updated on 31/Dec/18 $${If}\:{ax}^{\mathrm{2}} +{bx}+{c}+{i}=\mathrm{0}\:\mathrm{has}\:\mathrm{purely} \\ $$$$\mathrm{imaginary}\:\mathrm{roots}\:\mathrm{where}\: \\ $$$${a},{b},{c}\:{are}\:{non}−{zero}\:{real}. \\ $$$${answer}\:{given}:\:{a}={b}^{\mathrm{2}} {c} \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{question}\:\mathrm{is}\:\mathrm{wrong} \\ $$$$\mathrm{since}\:\mathrm{if}\:{z}_{\mathrm{1}}…

Determine-the-values-of-b-so-that-the-system-of-linear-equations-x-2y-z-1-2x-by-2z-2-4x-8y-b-2-z-2b-has-a-no-solution-b-a-unique-solution-c-infinitely-many-solutions-

Question Number 182900 by greougoury555 last updated on 16/Dec/22 $$\:{Determine}\:{the}\:{values}\:{of}\:{b}\:{so}\:{that} \\ $$$$\:{the}\:{system}\:{of}\:{linear}\:{equations} \\ $$$$\:\begin{cases}{{x}+\mathrm{2}{y}+{z}=\mathrm{1}}\\{\mathrm{2}{x}+{by}+\mathrm{2}{z}=\mathrm{2}}\\{\mathrm{4}{x}+\mathrm{8}{y}+{b}^{\mathrm{2}} \:{z}=\mathrm{2}{b}}\end{cases} \\ $$$$\:{has}\:\left({a}\right)\:{no}\:{solution}\: \\ $$$$\:\left({b}\right)\:{a}\:{unique}\:{solution} \\ $$$$\:\left({c}\right)\:{infinitely}\:{many}\:{solutions} \\ $$ Answered by…

Question-182866

Question Number 182866 by Shrinava last updated on 15/Dec/22 Answered by HeferH last updated on 15/Dec/22 $${if}\:{CD}\:\parallel\:{AB}\:: \\ $$$$\:\mathrm{8}{a}\:−\:\mathrm{60}\:=\:\mathrm{180}\: \\ $$$$\:{a}\:=\:\frac{\mathrm{240}}{\mathrm{8}}\:=\:\mathrm{30}° \\ $$ Terms of…

challanging-question-if-1-1-1-x-x-2-x-1-1-x-x-2-1-find-the-value-of-x-x-2-1-

Question Number 182852 by mnjuly1970 last updated on 16/Dec/22 $$ \\ $$$$\:{challanging}\:{question}.. \\ $$$$\:\:{if}\:\:\:,\:\frac{\mathrm{1}}{\:\mathrm{1}+\sqrt{\mathrm{1}−{x}+{x}^{\:\mathrm{2}} }}\:−\frac{{x}}{\mathrm{1}+\sqrt{\mathrm{1}+{x}+{x}^{\:\mathrm{2}} }}=\mathrm{1} \\ $$$$\:\:\:{find}\:\:{the}\:\:{value}\:{of}\::\:\:\:\frac{{x}}{{x}^{\:\mathrm{2}} +\mathrm{1}} \\ $$$$ \\ $$ Commented by…

solve-x-x-3-3-

Question Number 182804 by mnjuly1970 last updated on 14/Dec/22 $$ \\ $$$$\:\:\:\:{solve} \\ $$$$\:\:\:\:\lfloor\underset{} {\overset{} {{x}}}\:\rfloor\:−\:\lfloor\:\frac{{x}}{\mathrm{3}}\:\rfloor\:=\:\mathrm{3} \\ $$$$\:\:\:\:\:\:\: \\ $$ Answered by mahdipoor last updated…

n-1-1-n-2-n-n-n-1-n-2-

Question Number 182794 by mnjuly1970 last updated on 14/Dec/22 $$ \\ $$$$\:\:\:\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\:\left(−\underset{} {\overset{} {\mathrm{1}}}\:\right)^{\:{n}} }{\mathrm{2}^{\:{n}} .{n}\left({n}\underset{} {\overset{} {+}}\mathrm{1}\right)\left({n}\underset{} {\overset{} {+}}\mathrm{2}\right)}\:=\:?\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\…