Menu Close

Category: Algebra

Question-114806

Question Number 114806 by Algoritm last updated on 21/Sep/20 Answered by MJS_new last updated on 21/Sep/20 $${a}−\mathrm{8}=\frac{\sqrt{\mathrm{24}}}{\:\sqrt{{a}}} \\ $$$$\mathrm{let}\:{a}={t}^{\mathrm{2}} \wedge{t}>\mathrm{0} \\ $$$${t}^{\mathrm{2}} −\mathrm{8}=\frac{\mathrm{2}\sqrt{\mathrm{6}}}{{t}} \\ $$$${t}^{\mathrm{3}}…

Question-114799

Question Number 114799 by Algoritm last updated on 21/Sep/20 Answered by MJS_new last updated on 21/Sep/20 $$\mathrm{you}\:\mathrm{can}\:\mathrm{only}\:\mathrm{try} \\ $$$$\mathrm{for}\:{x}\in\mathbb{N}\:\mathrm{the}\:\mathrm{only}\:\mathrm{solution}\:\mathrm{is}\:{x}=\mathrm{3} \\ $$ Terms of Service Privacy…

Question-114796

Question Number 114796 by Algoritm last updated on 21/Sep/20 Answered by MJS_new last updated on 21/Sep/20 $${y}=\frac{{x}}{\mathrm{2}+{y}}=\frac{{x}}{\mathrm{2}+\frac{{x}}{\mathrm{2}+{y}}}=\frac{{x}}{\mathrm{2}+\frac{{x}}{\mathrm{2}+\frac{{x}}{\mathrm{2}+{y}}}}=… \\ $$$$\Rightarrow\:{y}=−\mathrm{1}+\sqrt{{x}+\mathrm{1}} \\ $$$$\mathrm{but}\:\mathrm{the}\:\mathrm{last}\:\mathrm{term}\:\mathrm{1}+\sqrt{{x}+\mathrm{1}}=\mathrm{2}+{y} \\ $$$$\Rightarrow\:\mathrm{solution}\:\mathrm{is}\:−\mathrm{1}+\sqrt{{x}+\mathrm{1}} \\ $$…

Question-114795

Question Number 114795 by Algoritm last updated on 21/Sep/20 Answered by MJS_new last updated on 21/Sep/20 $$\mathrm{3}^{{x}} =\mathrm{27}−\mathrm{9}^{\mathrm{2}{y}} \\ $$$$\mathrm{2}^{{x}} =\frac{\mathrm{1}}{\mathrm{8}}−\mathrm{4}^{−{y}} \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{1}\right)\:\mathrm{27}−\mathrm{9}^{\mathrm{2}{y}}…

Question-49256

Question Number 49256 by munnabhai455111@gmail.com last updated on 05/Dec/18 Answered by afachri last updated on 05/Dec/18 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{x}^{\mathrm{2}} \:+\:\mathrm{3}{x}\:=\:\mathrm{10} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} +\:\frac{\mathrm{3}}{\mathrm{2}}{x}\:=\:\mathrm{5}\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} \:+\:\mathrm{2}\left(\frac{\mathrm{3}}{\mathrm{4}}\right){x}\:=\:\mathrm{5} \\ $$$$\:\:\:\:\:{x}^{\mathrm{2}} \:+\:\mathrm{2}\left(\frac{\mathrm{3}}{\mathrm{4}}\right){x}\:+\:\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}}…

Question-49253

Question Number 49253 by cesar.marval.larez@gmail.com last updated on 04/Dec/18 Answered by afachri last updated on 05/Dec/18 $$\boldsymbol{\mathrm{no}}.\:\mathrm{2} \\ $$$$\boldsymbol{{f}}'\left({x}\right)\:=\:\:\underset{\boldsymbol{{h}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left[\frac{\:\:\:\:\:\left(\frac{\mathrm{3}\left({x}\:+\:{h}\right)\:+\:\mathrm{2}}{\mathrm{5}\left({x}\:+\:{h}\right)\:−\:\mathrm{2}}\:\:−\:\:\frac{\mathrm{3}{x}\:+\:\mathrm{2}}{\mathrm{5}{x}\:−\:\mathrm{2}\:}\right)\:\:\:\:}{{h}}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\underset{\boldsymbol{{h}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\frac{\mathrm{1}}{{h}}\left(\:\frac{\:\mathrm{3}{x}\:+\:\mathrm{3}{h}\:+\:\mathrm{2}\:}{\mathrm{5}{x}\:+\:\mathrm{5}{h}\:−\:\mathrm{2}}\:\:−\:\:\frac{\:\mathrm{3}{x}\:+\:\mathrm{2}}{\mathrm{5}{x}\:−\:\mathrm{2}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\underset{\boldsymbol{{h}}\rightarrow\mathrm{0}}…

Question-49251

Question Number 49251 by cesar.marval.larez@gmail.com last updated on 04/Dec/18 Commented by afachri last updated on 05/Dec/18 $$\mathrm{unfortunately}\:\mathrm{i}\:\mathrm{am}\:\mathrm{not}\:\mathrm{learning}\:\mathrm{integral} \\ $$$$\mathrm{yet} \\ $$ Answered by tanmay.chaudhury50@gmail.com last…

1-solve-z-4-1-i-3-2-factorize-p-x-x-4-1-i-3-inside-C-x-3-factorze-inside-R-x-the-polynom-p-x-

Question Number 49248 by maxmathsup by imad last updated on 04/Dec/18 $$\left.\mathrm{1}\right)\:{solve}\:{z}^{\mathrm{4}} =\mathrm{1}+{i}\sqrt{\mathrm{3}} \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{p}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{1}−{i}\sqrt{\mathrm{3}}{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right){factorze}\:{inside}\:{R}\left[{x}\right]\:{the}\:{polynom}\:{p}\left({x}\right). \\ $$ Answered by Smail last updated…