Menu Close

Category: Algebra

1-x-dx-x-2-x-4-2-x-2-x-3-2x-2-dx-3-2x-7-x-2-4x-3-dx-

Question Number 218003 by hardmath last updated on 25/Mar/25 $$\mathrm{1}.\:\:\:\int\:\:\frac{\mathrm{x}\:\mathrm{dx}}{\left(\mathrm{x}\:+\:\mathrm{2}\right)\centerdot\left(\mathrm{x}\:+\:\mathrm{4}\right)} \\ $$$$\mathrm{2}.\:\:\:\int\:\:\frac{\mathrm{x}\:+\:\mathrm{2}}{\mathrm{x}^{\mathrm{3}} \:−\:\mathrm{2x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$$$\mathrm{3}.\:\:\:\int\:\:\frac{\mathrm{2x}\:+\:\mathrm{7}}{\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{4x}\:+\:\mathrm{3}}\:\mathrm{dx} \\ $$ Commented by Ghisom last updated on…

x-3-3x-1-0-The-roots-of-the-equation-a-b-c-Find-a-1-3-b-1-3-c-1-3-

Question Number 217985 by hardmath last updated on 24/Mar/25 $$\mathrm{x}^{\mathrm{3}} \:−\:\mathrm{3x}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{The}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:\rightarrow\:\mathrm{a}\:,\:\mathrm{b}\:,\:\mathrm{c} \\ $$$$\mathrm{Find}\:\rightarrow\:\sqrt[{\mathrm{3}}]{\mathrm{a}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{b}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{c}}\:=\:? \\ $$ Commented by Frix last updated on 24/Mar/25 $$\mathrm{suppose}\:{a}<{b}<{c}…

Solve-x-x-1-2-x-x-1-2-6-

Question Number 217911 by Rasheed.Sindhi last updated on 23/Mar/25 $${Solve} \\ $$$$\left(\frac{{x}}{{x}−\mathrm{1}}\right)^{\mathrm{2}} +\left(\frac{{x}}{{x}+\mathrm{1}}\right)^{\mathrm{2}} =\mathrm{6} \\ $$ Answered by Rasheed.Sindhi last updated on 23/Mar/25 $$\left(\frac{{x}}{{x}−\mathrm{1}}\right)^{\mathrm{2}} +\left(\frac{{x}}{{x}+\mathrm{1}}\right)^{\mathrm{2}}…

In-ABC-holds-cot-A-cot-B-3-cot-C-1-2-27-1-4-

Question Number 217894 by hardmath last updated on 23/Mar/25 $$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC}\:\:\mathrm{holds}: \\ $$$$\Sigma\:\frac{\mathrm{cot}\:\mathrm{A}}{\:\sqrt{\mathrm{cot}\:\mathrm{B}\:\:+\:\:\mathrm{3}\:\mathrm{cot}\:\mathrm{C}}}\:\:\geqslant\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\:\sqrt[{\mathrm{4}}]{\mathrm{27}}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Solve-x-1-x-2-x-1-x-2-2x-1-x-1-2x-1-x-1-

Question Number 217887 by ArshadS last updated on 23/Mar/25 $${Solve}\:: \\ $$$$\frac{{x}+\mathrm{1}}{{x}−\mathrm{2}}+\frac{{x}−\mathrm{1}}{{x}+\mathrm{2}}=\frac{\mathrm{2}{x}+\mathrm{1}}{{x}−\mathrm{1}}+\frac{\mathrm{2}{x}−\mathrm{1}}{{x}+\mathrm{1}} \\ $$ Answered by Rasheed.Sindhi last updated on 23/Mar/25 $$\frac{{x}+\mathrm{1}}{{x}−\mathrm{2}}−\mathrm{1}+\frac{{x}−\mathrm{1}}{{x}+\mathrm{2}}−\mathrm{1}+\mathrm{2}=\frac{\mathrm{2}{x}+\mathrm{1}}{{x}−\mathrm{1}}−\mathrm{2}+\frac{\mathrm{2}{x}−\mathrm{1}}{{x}+\mathrm{1}}−\mathrm{2}+\mathrm{4} \\ $$$$\frac{\mathrm{3}}{{x}−\mathrm{2}}+\frac{−\mathrm{3}}{{x}+\mathrm{2}}=\frac{\mathrm{3}}{{x}−\mathrm{1}}+\frac{−\mathrm{3}}{{x}+\mathrm{1}}+\mathrm{2} \\…

Solve-2x-7-x-1-2-

Question Number 217940 by ArshadS last updated on 23/Mar/25 $${Solve} \\ $$$$\sqrt{\mathrm{2}{x}+\mathrm{7}}\:\:−\sqrt{{x}−\mathrm{1}}\:=\mathrm{2}\:\:\:\:\:\:\:\:\:\:\: \\ $$ Answered by Frix last updated on 23/Mar/25 $$\mathrm{No}\:\mathrm{real}\:\mathrm{solution}\:\mathrm{because}\:\mathrm{min}\:\left(\mathrm{lhs}\right)\:>\mathrm{2} \\ $$$${a},\:{b}\:\in\mathbb{R}\wedge{b}\neq\mathrm{0} \\…