Question Number 110436 by bemath last updated on 29/Aug/20 $$\:\:\:\:\:\mathrm{If}\:\mathrm{2f}\left(\mathrm{x}\right)\:+\:\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:=\:\mathrm{3x} \\ $$$$\:\:\:\:\:\mathrm{what}\:\mathrm{is}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$ Answered by john santu last updated on 29/Aug/20 $$\:\:\:{replace}\:{x}\:{by}\:\frac{\mathrm{1}}{{x}} \\ $$$$\Leftrightarrow\:\mathrm{2}{f}\left(\frac{\mathrm{1}}{{x}}\right)\:+\:{f}\left({x}\right)\:=\:\frac{\mathrm{3}}{{x}}\:…
Question Number 110434 by Aina Samuel Temidayo last updated on 29/Aug/20 $$\mathrm{The}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{four}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{increasing}\:\mathrm{arithmetic}\:\mathrm{progression}\:\mathrm{is}\:\mathrm{a}, \\ $$$$\mathrm{their}\:\mathrm{sum}\:\mathrm{is}\:\mathrm{b},\:\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{their} \\ $$$$\mathrm{reciprocal}\:\mathrm{is}\:\mathrm{c}.\:\mathrm{Suppose}\:\mathrm{that}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{form} \\ $$$$\mathrm{a}\:\mathrm{geometric}\:\mathrm{progression}\:\mathrm{whose} \\ $$$$\mathrm{product}\:\mathrm{is}\:\mathrm{8000},\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{first}\:\mathrm{and}\:\mathrm{fourth}\:\mathrm{term}. \\…
Question Number 44898 by ajfour last updated on 06/Oct/18 $${If}\:\:\:\:{x}^{\mathrm{4}} +{px}^{\mathrm{3}} +{qx}^{\mathrm{2}} +{rx}+\mathrm{5}\:=\:\mathrm{0} \\ $$$${has}\:{four}\:{real}\:{roots},\:{then}\:{find} \\ $$$$\:{the}\:{minimum}\:{value}\:{of}\:\boldsymbol{{pr}}. \\ $$ Commented by MJS last updated on…
Question Number 44892 by Tawa1 last updated on 06/Oct/18 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{formular}\:\mathrm{for}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{kth}\:\mathrm{power}\:\mathrm{of}\:\mathrm{natural}\:\mathrm{number} \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on 06/Oct/18 $${do}\:{the}\:{question}\:{mean} \\ $$$${S}_{{k}} =\mathrm{1}^{{k}} +\mathrm{2}^{{k}} +\mathrm{3}^{{k}}…
Question Number 110425 by Aina Samuel Temidayo last updated on 28/Aug/20 $$ \\ $$$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{factor} \\ $$$$\mathrm{of}\:\mathrm{x}^{\mathrm{6}} −\mathrm{56x}+\mathrm{55} \\ $$$$\mathrm{A}.\:\mathrm{x}−\mathrm{1}\:\mathrm{B}.\:\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{5}\:\mathrm{C}. \\ $$$$\mathrm{x}^{\mathrm{3}} +\mathrm{2x}^{\mathrm{2}} −\mathrm{2x}−\mathrm{11}\:\mathrm{D}. \\…
Question Number 175959 by BaliramKumar last updated on 10/Sep/22 $${f}\left({x}\right)\:=\:{x}^{\mathrm{6}} \:−\:\mathrm{100}{x}^{\mathrm{5}} \:+\:\mathrm{100}{x}^{\mathrm{4}} \:−\:\mathrm{100}{x}^{\mathrm{3}} \:+\:\mathrm{100}{x}^{\mathrm{2}} \:−\:\mathrm{100}{x}\:+\:\mathrm{100} \\ $$$${f}\left(\mathrm{99}\right)\:=\:? \\ $$ Commented by infinityaction last updated on…
Question Number 110420 by Aina Samuel Temidayo last updated on 28/Aug/20 $$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{x}^{\mathrm{5}} −\mathrm{3x}^{\mathrm{4}} −\mathrm{17x}^{\mathrm{3}} −\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{17}\:\mathrm{cannot}\:\mathrm{be} \\ $$$$\mathrm{factorized}\:\mathrm{completely}\:\mathrm{over}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of} \\ $$$$\mathrm{polynomials}\:\mathrm{with}\:\mathrm{integral}\:\mathrm{coefficients}. \\ $$ Answered…
Question Number 110419 by Aina Samuel Temidayo last updated on 28/Aug/20 $$\mathrm{Let}\:\mathrm{t}\:\mathrm{be}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\mathrm{x}^{\mathrm{3}} −\mathrm{3x}+\mathrm{1}=\mathrm{0},\:\mathrm{if}\: \\ $$$$\frac{\mathrm{t}^{\mathrm{2}} +\mathrm{pt}+\mathrm{1}}{\mathrm{t}^{\mathrm{2}} −\mathrm{t}+\mathrm{1}}\:\mathrm{can}\:\mathrm{be}\:\mathrm{written}\:\mathrm{as}\:\mathrm{t}+\mathrm{c}\:\mathrm{for} \\ $$$$\mathrm{some}\:\mathrm{p},\mathrm{c}\:\in\:\mathbb{Z},\:\mathrm{then}\:\mathrm{p}−\mathrm{c}\:\mathrm{equals}? \\ $$ Commented by Her_Majesty last…
Question Number 175951 by blackmamba last updated on 10/Sep/22 $$\:{Given}\:{f}\left({x}\right)={ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}\: \\ $$$$\:{a}\neq\:\mathrm{0}\:{and}\:\mid{f}\:'\left({x}\right)\mid\:\leqslant\:\mathrm{1}\:{for}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\: \\ $$$$\:{find}\:{max}\:{value}\:{of}\:{a}. \\ $$ Commented by infinityaction last updated on 10/Sep/22…
Question Number 44876 by Tinkutara last updated on 05/Oct/18 Answered by ajfour last updated on 06/Oct/18 $${let}\:\:{z}_{\mathrm{1}} =\:{x}\:\:,\:\:{z}_{\mathrm{2}} \:=\:{y}\:\:\:\:\left({just}\:{calling}\right) \\ $$$$\:\:\:\:\begin{cases}{\:\boldsymbol{{x}}\left(\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{3}\boldsymbol{{y}}^{\mathrm{2}} \right)=\mathrm{2}}\\{\:\boldsymbol{{y}}\left(\mathrm{3}\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{{y}}^{\mathrm{2}} \right)=\mathrm{1}}\end{cases}…