Menu Close

Category: Algebra

If-2f-x-f-1-x-3x-what-is-f-x-

Question Number 110436 by bemath last updated on 29/Aug/20 $$\:\:\:\:\:\mathrm{If}\:\mathrm{2f}\left(\mathrm{x}\right)\:+\:\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:=\:\mathrm{3x} \\ $$$$\:\:\:\:\:\mathrm{what}\:\mathrm{is}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$ Answered by john santu last updated on 29/Aug/20 $$\:\:\:{replace}\:{x}\:{by}\:\frac{\mathrm{1}}{{x}} \\ $$$$\Leftrightarrow\:\mathrm{2}{f}\left(\frac{\mathrm{1}}{{x}}\right)\:+\:{f}\left({x}\right)\:=\:\frac{\mathrm{3}}{{x}}\:…

The-product-of-the-four-terms-of-an-increasing-arithmetic-progression-is-a-their-sum-is-b-and-the-sum-of-their-reciprocal-is-c-Suppose-that-a-b-c-form-a-geometric-progression-whose-product-is-8000-

Question Number 110434 by Aina Samuel Temidayo last updated on 29/Aug/20 $$\mathrm{The}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{four}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{increasing}\:\mathrm{arithmetic}\:\mathrm{progression}\:\mathrm{is}\:\mathrm{a}, \\ $$$$\mathrm{their}\:\mathrm{sum}\:\mathrm{is}\:\mathrm{b},\:\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{their} \\ $$$$\mathrm{reciprocal}\:\mathrm{is}\:\mathrm{c}.\:\mathrm{Suppose}\:\mathrm{that}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{form} \\ $$$$\mathrm{a}\:\mathrm{geometric}\:\mathrm{progression}\:\mathrm{whose} \\ $$$$\mathrm{product}\:\mathrm{is}\:\mathrm{8000},\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{first}\:\mathrm{and}\:\mathrm{fourth}\:\mathrm{term}. \\…

Find-the-formular-for-the-sum-of-the-first-kth-power-of-natural-number-

Question Number 44892 by Tawa1 last updated on 06/Oct/18 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{formular}\:\mathrm{for}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{kth}\:\mathrm{power}\:\mathrm{of}\:\mathrm{natural}\:\mathrm{number} \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on 06/Oct/18 $${do}\:{the}\:{question}\:{mean} \\ $$$${S}_{{k}} =\mathrm{1}^{{k}} +\mathrm{2}^{{k}} +\mathrm{3}^{{k}}…

Which-of-the-following-is-not-a-factor-of-x-6-56x-55-A-x-1-B-x-2-x-5-C-x-3-2x-2-2x-11-D-x-4-x-3-4x-2-9x-11-E-x-5-x-4-x-3-x-2-x-55-Please-show-all-workings-clearly-Thanks-

Question Number 110425 by Aina Samuel Temidayo last updated on 28/Aug/20 $$ \\ $$$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{factor} \\ $$$$\mathrm{of}\:\mathrm{x}^{\mathrm{6}} −\mathrm{56x}+\mathrm{55} \\ $$$$\mathrm{A}.\:\mathrm{x}−\mathrm{1}\:\mathrm{B}.\:\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{5}\:\mathrm{C}. \\ $$$$\mathrm{x}^{\mathrm{3}} +\mathrm{2x}^{\mathrm{2}} −\mathrm{2x}−\mathrm{11}\:\mathrm{D}. \\…

Prove-that-x-5-3x-4-17x-3-x-2-3x-17-cannot-be-factorized-completely-over-the-set-of-polynomials-with-integral-coefficients-

Question Number 110420 by Aina Samuel Temidayo last updated on 28/Aug/20 $$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{x}^{\mathrm{5}} −\mathrm{3x}^{\mathrm{4}} −\mathrm{17x}^{\mathrm{3}} −\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{17}\:\mathrm{cannot}\:\mathrm{be} \\ $$$$\mathrm{factorized}\:\mathrm{completely}\:\mathrm{over}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of} \\ $$$$\mathrm{polynomials}\:\mathrm{with}\:\mathrm{integral}\:\mathrm{coefficients}. \\ $$ Answered…

Let-t-be-a-root-of-x-3-3x-1-0-if-t-2-pt-1-t-2-t-1-can-be-written-as-t-c-for-some-p-c-Z-then-p-c-equals-

Question Number 110419 by Aina Samuel Temidayo last updated on 28/Aug/20 $$\mathrm{Let}\:\mathrm{t}\:\mathrm{be}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\mathrm{x}^{\mathrm{3}} −\mathrm{3x}+\mathrm{1}=\mathrm{0},\:\mathrm{if}\: \\ $$$$\frac{\mathrm{t}^{\mathrm{2}} +\mathrm{pt}+\mathrm{1}}{\mathrm{t}^{\mathrm{2}} −\mathrm{t}+\mathrm{1}}\:\mathrm{can}\:\mathrm{be}\:\mathrm{written}\:\mathrm{as}\:\mathrm{t}+\mathrm{c}\:\mathrm{for} \\ $$$$\mathrm{some}\:\mathrm{p},\mathrm{c}\:\in\:\mathbb{Z},\:\mathrm{then}\:\mathrm{p}−\mathrm{c}\:\mathrm{equals}? \\ $$ Commented by Her_Majesty last…

Given-f-x-ax-3-bx-2-cx-d-a-0-and-f-x-1-for-0-x-1-find-max-value-of-a-

Question Number 175951 by blackmamba last updated on 10/Sep/22 $$\:{Given}\:{f}\left({x}\right)={ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}\: \\ $$$$\:{a}\neq\:\mathrm{0}\:{and}\:\mid{f}\:'\left({x}\right)\mid\:\leqslant\:\mathrm{1}\:{for}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\: \\ $$$$\:{find}\:{max}\:{value}\:{of}\:{a}. \\ $$ Commented by infinityaction last updated on 10/Sep/22…

Question-44876

Question Number 44876 by Tinkutara last updated on 05/Oct/18 Answered by ajfour last updated on 06/Oct/18 $${let}\:\:{z}_{\mathrm{1}} =\:{x}\:\:,\:\:{z}_{\mathrm{2}} \:=\:{y}\:\:\:\:\left({just}\:{calling}\right) \\ $$$$\:\:\:\:\begin{cases}{\:\boldsymbol{{x}}\left(\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{3}\boldsymbol{{y}}^{\mathrm{2}} \right)=\mathrm{2}}\\{\:\boldsymbol{{y}}\left(\mathrm{3}\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{{y}}^{\mathrm{2}} \right)=\mathrm{1}}\end{cases}…