Question Number 175554 by Linton last updated on 02/Sep/22 $${x}^{\sqrt{{x}}} =\sqrt{{x}^{{x}} } \\ $$$${find}\:{x} \\ $$ Answered by mr W last updated on 02/Sep/22 $${x}=\mathrm{0}…
Question Number 175548 by Rasheed.Sindhi last updated on 02/Sep/22 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\begin{array}{|c|}{\overset{\underset{−} {\overline {\mid\bullet\mid}}} {\:\begin{array}{|c|}{\underset{} {\overset{} {\mathrm{2}+\mathrm{424}+\mathrm{44244}+\mathrm{4442444}+\centerdot\centerdot\centerdot{n}\:{terms}=?_{} ^{} }}}\\\hline\end{array}_{} ^{} }}\\\hline\end{array} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$…
Question Number 175521 by Shrinava last updated on 01/Sep/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 44444 by peter frank last updated on 29/Sep/18 $${simplify}\:\:\:\:\sqrt{\left(\mathrm{4}{x}^{\mathrm{2}} {y}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} +\left(\mathrm{8}{x}^{\mathrm{2}} {y}^{\mathrm{2}} \right)^{\mathrm{4}} } \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 29/Sep/18…
Question Number 175505 by EnterUsername last updated on 31/Aug/22 $${N}=\mathrm{64990691606209}\:\mathrm{is}\:\mathrm{a}\:\mathrm{semi}-\mathrm{prime}\:\mathrm{number}. \\ $$$$\mathrm{That}\:\mathrm{is},\:{N}={pq}\:\mathrm{where}\:{p}\:\mathrm{and}\:{q}\:\mathrm{are}\:\mathrm{prime}\:\mathrm{numbers}. \\ $$$$\mathrm{Find}\:{p}\:\mathrm{and}\:{q}: \\ $$ Commented by Ar Brandon last updated on 31/Aug/22 #include <stdio.h> int main(void) { long long i = 2, N = 64990691606209; for (; (N % i) != 0; i++); printf("p = %lld, q = %lld", i, N/i); return 0; }…
Question Number 109954 by Study last updated on 26/Aug/20 $$!\mathrm{3}=???? \\ $$ Answered by mathdave last updated on 26/Aug/20 $${solution} \\ $$$${recall}\:{that} \\ $$$$!{x}={x}!\underset{{n}=\mathrm{0}} {\overset{{x}}…
Question Number 175490 by Linton last updated on 31/Aug/22 $${solve} \\ $$$${f}\left({x}\right){f}\left({y}\right)=\:{f}\left({x}+{y}\right)+{xy} \\ $$$${f}:\mathbb{R}\Rightarrow\mathbb{R} \\ $$ Answered by ajfour last updated on 31/Aug/22 $${f}\left({x}\right){f}\left(\mathrm{0}\right)={f}\left({x}+\mathrm{0}\right)+\mathrm{0} \\…
Question Number 175487 by Linton last updated on 31/Aug/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 44397 by Necxx last updated on 28/Sep/18 $${If}\:{x}\:{is}\:{nearly}\:{equal}\:{to}\:\mathrm{1}\:{then} \\ $$$$\frac{{mx}^{{m}} −{nx}^{{n}} }{{m}−{n}}= \\ $$ Commented by MrW3 last updated on 28/Sep/18 $${if}\:{x}\approx\mathrm{1} \\…
Question Number 175470 by mnjuly1970 last updated on 31/Aug/22 Answered by mahdipoor last updated on 31/Aug/22 $${get}\:\:\:\frac{{n}}{\mathrm{2}}\leqslant{x}<\frac{{n}+\mathrm{1}}{\mathrm{2}}\:\:\:\:{n}\in{Z} \\ $$$$\Rightarrow{n}\leqslant{y}={x}+\frac{{n}}{\mathrm{2}}<{n}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\left[{y}\right]={n}= \\ $$$$\Rightarrow{y}−\frac{\mathrm{1}}{\mathrm{2}}\left[{y}\right]=\left({x}+\frac{{n}}{\mathrm{2}}\right)−\left(\frac{{n}}{\mathrm{2}}\right)={x} \\ $$$$\Rightarrow\Rightarrow{f}^{\:−\mathrm{1}}…