Menu Close

Category: Algebra

Question-174732

Question Number 174732 by oustmuchiya@gmail.com last updated on 09/Aug/22 Answered by aleks041103 last updated on 10/Aug/22 $${its}\:{not}\:{possible}\:{to}\:“{convert}''\:{a}\:{matrix} \\ $$$${into}\:{an}\:{identity}\:{matrix}. \\ $$$${what}\:{would}\:{that}\:{even}\:{mean}? \\ $$ Terms of…

Question-174719

Question Number 174719 by AgniMath last updated on 09/Aug/22 Answered by behi834171 last updated on 09/Aug/22 $$\boldsymbol{{a}}+\boldsymbol{{b}}\neq\mathrm{0} \\ $$$$\Rightarrow\frac{\boldsymbol{{a}}+\boldsymbol{{b}}}{\boldsymbol{{ab}}}=\frac{\mathrm{1}}{\boldsymbol{{a}}+\boldsymbol{{b}}}\Rightarrow\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}} =\boldsymbol{{ab}}\Rightarrow \\ $$$$\Rightarrow\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{ab}}+\boldsymbol{{b}}^{\mathrm{2}} =\mathrm{0}\overset{\boldsymbol{{a}}\neq\boldsymbol{{b}}} {\Rightarrow}\left(\boldsymbol{{a}}−\boldsymbol{{b}}\right)\left(\boldsymbol{{a}}^{\mathrm{2}}…

Find-the-equation-of-line-through-the-point-of-intersection-of-the-line-x-3y-11-0-and-5x-4y-2-0-and-perpendicular-to-4x-2y-9-0-

Question Number 109160 by john santu last updated on 21/Aug/20 $${Find}\:{the}\:{equation}\:{of}\:{line}\:{through} \\ $$$${the}\:{point}\:{of}\:{intersection}\:{of}\:{the} \\ $$$${line}\:{x}+\mathrm{3}{y}−\mathrm{11}=\mathrm{0}\:{and}\:\mathrm{5}{x}−\mathrm{4}{y}+\mathrm{2}=\mathrm{0} \\ $$$${and}\:{perpendicular}\:{to}\:\mathrm{4}{x}+\mathrm{2}{y}+\mathrm{9}=\mathrm{0}. \\ $$ Answered by bemath last updated on…

Q-I-J-are-two-ideals-of-commutative-ring-R-prove-that-I-J-I-J-m-n-note-I-x-R-n-N-x-n-I-

Question Number 174684 by mnjuly1970 last updated on 08/Aug/22 $$ \\ $$$$\boldsymbol{\mathrm{Q}}:\:\:\boldsymbol{\mathrm{I}}\:,\:\boldsymbol{\mathrm{J}}\:\:\boldsymbol{{are}}\:\boldsymbol{{two}}\:\boldsymbol{{ideals}}\:\boldsymbol{{of}}\:\:\boldsymbol{{commutative}}\: \\ $$$$\:\:\:\:\boldsymbol{{ring}}\:,\:\left(\:\boldsymbol{\mathrm{R}}\:,\oplus,\: \:\right)\:.\boldsymbol{{prove}}\:\boldsymbol{{that}}\:: \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\sqrt{\:\boldsymbol{\mathrm{I}}\:\cap\:\boldsymbol{\mathrm{J}}\:}\:\:\overset{?} {=}\:\sqrt{\:\boldsymbol{\mathrm{I}}\:}\:\:\cap\:\:\sqrt{\:\boldsymbol{\mathrm{J}}\:}\:\:\:\:\:\boldsymbol{{m}}.\boldsymbol{{n}} \\ $$$$\:\:\:\:\boldsymbol{{note}}\::\:\sqrt{\boldsymbol{\mathrm{I}}\:}\:=\:\left\{\:\boldsymbol{{x}}\:\in\:\boldsymbol{\mathrm{R}}\:\mid\:\exists\:\boldsymbol{{n}}\in\:\mathbb{N}\:,\:\boldsymbol{{x}}^{\:\boldsymbol{{n}}} \:\in\:\boldsymbol{\mathrm{I}}\:\right\}\: \\ $$$$\:…

The-principal-argument-of-z-1-cos-6pi-5-isin-6pi-5-is-

Question Number 109147 by ajfour last updated on 21/Aug/20 $${The}\:{principal}\:{argument}\:{of} \\ $$$${z}=\mathrm{1}+\mathrm{cos}\:\left(\frac{\mathrm{6}\pi}{\mathrm{5}}\right)+{i}\mathrm{sin}\:\left(\frac{\mathrm{6}\pi}{\mathrm{5}}\right)\:\:\:{is}\:=\:? \\ $$ Answered by Dwaipayan Shikari last updated on 21/Aug/20 $$ \\ $$$${tan}\theta=\frac{{sin}\frac{\mathrm{6}\pi}{\mathrm{5}}}{\mathrm{1}+{cos}\frac{\mathrm{6}\pi}{\mathrm{5}}}={tan}\frac{\mathrm{3}\pi}{\mathrm{5}}…

MJS-12-9-18-Code-43569-I-solved-one-of-these-where-and-how-do-i-get-the-prize-the-google-page-doesn-t-really-tell-i-cannot-see-where-to-send-my-solution-and-I-can-t-see-any-guarantee-t

Question Number 43608 by LYCON TRIX last updated on 12/Sep/18 $$\mathrm{MJS}\:\left[\:\:\mathrm{12}/\mathrm{9}/\mathrm{18}\:\right]\:\mathrm{Code}\:−\:\mathrm{43569}\: \\ $$$$\mathrm{I}\:\mathrm{solved}\:\mathrm{one}\:\mathrm{of}\:\mathrm{these}\:,\:\mathrm{where}\:\mathrm{and}\:\mathrm{how}\:\mathrm{do} \\ $$$$\mathrm{i}\:\mathrm{get}\:\mathrm{the}\:\mathrm{prize}\:?\: \\ $$$$\mathrm{the}\:\mathrm{google}+\:\mathrm{page}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{really}\:\mathrm{tell}. \\ $$$$\mathrm{i}\:\mathrm{cannot}\:\mathrm{see}\:\mathrm{where}\:\mathrm{to}\:\mathrm{send}\:\mathrm{my}\:\mathrm{solution}\: \\ $$$$\mathrm{and}\:\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{see}\:\mathrm{any}\:\mathrm{guarantee}\:\mathrm{to}\:\mathrm{keep}\:\mathrm{my} \\ $$$$\mathrm{copyright}\: \\ $$$$\mathrm{LYCON}\:\mathrm{TRIX}\:−\:…

In-ABC-the-following-relationship-holds-a-4-lt-b-2-c-2-2-9R-4-

Question Number 174674 by Shrinava last updated on 08/Aug/22 $$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC}\:\:\mathrm{the}\:\mathrm{following}\:\mathrm{relationship}\:\mathrm{holds}: \\ $$$$\mathrm{a}^{\mathrm{4}} \:<\:\left(\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} \right)^{\mathrm{2}} \:+\:\mathrm{9R}^{\mathrm{4}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com