Question Number 106907 by Study last updated on 07/Aug/20 Answered by Don08q last updated on 08/Aug/20 $$\:\:\:\:\:\:=\:\mathrm{log}_{\mathrm{2}} \left(\mathrm{log}_{\mathrm{8}} \left(\mathrm{64}\right)^{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{39}} } \right)\:\underset{} {\:} \\ $$$$\:\:\:\:\:\:=\:\mathrm{log}_{\mathrm{2}} \left(\mathrm{log}_{\mathrm{8}}…
Question Number 41327 by Fawomath last updated on 05/Aug/18 $${Derive}\:{the}\:{sum}\:{of}\:{an}\:{Harmonic}\:{Progression} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 172360 by Mikenice last updated on 25/Jun/22 Commented by mr W last updated on 25/Jun/22 $$\left(\mathrm{1}\right) \\ $$$$\mathrm{4}=\sqrt{\mathrm{16}}=\sqrt{\mathrm{13}+\sqrt{\mathrm{9}}}=\sqrt{\mathrm{13}+\sqrt{\mathrm{5}+\mathrm{4}}}=\sqrt{\mathrm{13}+\sqrt{\mathrm{5}+\sqrt{\mathrm{13}+\sqrt{\mathrm{5}+\sqrt{\mathrm{13}+…}}}}} \\ $$ Commented by mr…
Question Number 172357 by Mikenice last updated on 25/Jun/22 Answered by MJS_new last updated on 26/Jun/22 $${y}={x}^{{x}^{{x}…} } \\ $$$${y}={x}^{{y}} \\ $$$${x}={y}^{\mathrm{1}/{y}} \\ $$ Terms…
Question Number 106816 by bemath last updated on 07/Aug/20 $$\mathrm{prove}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{n}^{\mathrm{2}} \:\leqslant\:\mathrm{2}^{\mathrm{n}} \:;\:\mathrm{n}\:\geqslant\:\mathrm{4} \\ $$$$\left(\mathrm{2}\right)\:\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}} \:<\:\mathrm{2n}^{\mathrm{2}} \:;\:\mathrm{n}\:\geqslant\:\mathrm{3} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{2}^{\mathrm{n}} −\mathrm{3}\:\geqslant\:\mathrm{2}^{\mathrm{n}−\mathrm{2}} \:;\:\mathrm{n}\:\geqslant\:\mathrm{5} \\ $$$$\:\:\:\:\:\:@\mathrm{bemath}@ \\…
Question Number 106794 by bobhans last updated on 07/Aug/20 $$\mathrm{repost}\:\mathrm{old}\:\mathrm{question}\:\mathrm{unanswer} \\ $$$$\mathcal{G}\mathrm{iven}\:\rightarrow\begin{cases}{\frac{\mathrm{4x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{4x}^{\mathrm{2}} }\:=\:\mathrm{y}}\\{\frac{\mathrm{4y}^{\mathrm{2}} }{\mathrm{1}+\mathrm{4y}^{\mathrm{2}} }\:=\:\mathrm{z}}\\{\frac{\mathrm{4z}^{\mathrm{2}} }{\mathrm{1}+\mathrm{4z}^{\mathrm{2}} }\:=\:\mathrm{x}}\end{cases} \\ $$ Answered by thearith last updated…
Question Number 106774 by bemath last updated on 07/Aug/20 $$\:\:\:\:\overset{@\mathrm{bemath}@} {\:} \\ $$$$\:\left(\mathrm{1}\right)\:\:\:\:\mathrm{3}^{{x}} \:+\:\mathrm{3}^{\sqrt{{x}}\:} =\:\mathrm{90}.\:\mathrm{find}\:{x}\:?\: \\ $$$$\:\:\left(\mathrm{2}\right)\:\mathrm{x}\:\frac{\mathrm{dy}}{\mathrm{dx}}−\left(\mathrm{1}+\mathrm{x}\right)\mathrm{y}\:=\:\mathrm{xy}^{\mathrm{2}} \\ $$ Answered by john santu last updated…
Question Number 106745 by qwertyu last updated on 06/Aug/20 Commented by Her_Majesty last updated on 06/Aug/20 $${always}\:{the}\:{same}\:{questions}… \\ $$$${how}\:{do}\:{you}\:{define}\:“{x}!''? \\ $$ Commented by qwertyu last…
Question Number 172282 by BaliramSingh last updated on 25/Jun/22 $${Find}\:{the}\:{all}\:{valid}\:{value}\:{of}\:\:\:{x} \\ $$$${x}^{\mathrm{2}} \:−\:\sqrt{\mathrm{4}+{x}}\:=\:\mathrm{4} \\ $$ Answered by dumitrel last updated on 25/Jun/22 $${x}^{\mathrm{2}} −\mathrm{4}\geqslant\mathrm{0};{x}+\mathrm{4}\geqslant\mathrm{0} \\…
Question Number 172268 by Mikenice last updated on 25/Jun/22 Terms of Service Privacy Policy Contact: info@tinkutara.com