Menu Close

Category: Algebra

Question-169610

Question Number 169610 by mathlove last updated on 04/May/22 Answered by som(math1967) last updated on 04/May/22 $$\frac{\alpha^{\mathrm{2}} }{\alpha^{\mathrm{2}} +\alpha\beta+\alpha\gamma}+\frac{\beta^{\mathrm{2}} }{\beta^{\mathrm{2}} +\alpha\beta+\beta\gamma}+\frac{\gamma^{\mathrm{2}} }{\gamma^{\mathrm{2}} +\beta\gamma+\gamma\alpha}\:\bigstar \\ $$$$=\frac{\alpha^{\mathrm{2}}…

Question-169585

Question Number 169585 by Shrinava last updated on 03/May/22 Commented by mr W last updated on 03/May/22 $${please}\:{check}\:{the}\:{question}!\:{one}\:{can}'{t} \\ $$$${image}\:{how}\:{it}\:{looks}\:{like}.\:{maybe} \\ $$$${D}\:{on}\:{BC},\:{E}\:{on}\:{CA}\:{and}\:{F}\:{on}\:{AB}. \\ $$ Commented…

f-x-x-x-2-x-3-x-6-R-f-

Question Number 169569 by mnjuly1970 last updated on 03/May/22 $$ \\ $$$$\:\:\:\:\:{f}\left({x}\right)\:=\:{x}\:−\lfloor\frac{{x}}{\mathrm{2}}\rfloor−\lfloor\frac{{x}}{\mathrm{3}}\rfloor−\lfloor\frac{{x}}{\mathrm{6}}\rfloor \\ $$$$\:\:\:\:\:\:\:\:\:\:{R}_{\:{f}} \:=\:? \\ $$$$\:\:\:\:\: \\ $$ Answered by mahdipoor last updated on…

1-x-3-y-6-91-x-y-2-7-find-x-y-6-2-2a-2-a-8-a-6-1-a-3-

Question Number 104037 by bramlex last updated on 19/Jul/20 $$\left(\mathrm{1}\right)\begin{cases}{{x}^{\mathrm{3}} +{y}^{\mathrm{6}} \:=\:\mathrm{91}}\\{{x}+{y}^{\mathrm{2}} \:=\:\mathrm{7}\:}\end{cases} \\ $$$${find}\:{x}−{y}^{\mathrm{6}} \:. \\ $$$$\left(\mathrm{2}\right)\:\mathrm{2}{a}+\frac{\mathrm{2}}{{a}}\:=\:\mathrm{8}\:\Rightarrow\:\frac{{a}^{\mathrm{6}} +\mathrm{1}}{{a}^{\mathrm{3}} }\:? \\ $$ Answered by bemath…

Question-104023

Question Number 104023 by I want to learn more last updated on 18/Jul/20 Commented by I want to learn more last updated on 18/Jul/20 .A man answers 10 maths problems, one after the other. He answers the first problem correctly and the second problem incorrectly, for each of the remaining 8 problems the probability that he answers the problem correctly equals to the ratio of the number of problems that he has already answered correctly to the total number of problems that he has already answered. What is the probability that he answers exactly 5 out of 10 problems correctly…