Question Number 169613 by cortano1 last updated on 04/May/22 Commented by mr W last updated on 04/May/22 $${i}\:{see}\:{x}=\mathrm{1} \\ $$ Commented by MaxiMaths last updated…
Question Number 169620 by MaxiMaths last updated on 04/May/22 Commented by MaxiMaths last updated on 04/May/22 $$\mathrm{any}\:\mathrm{way}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{function}\:{f}\:\:??? \\ $$ Commented by mr W last updated…
Question Number 169610 by mathlove last updated on 04/May/22 Answered by som(math1967) last updated on 04/May/22 $$\frac{\alpha^{\mathrm{2}} }{\alpha^{\mathrm{2}} +\alpha\beta+\alpha\gamma}+\frac{\beta^{\mathrm{2}} }{\beta^{\mathrm{2}} +\alpha\beta+\beta\gamma}+\frac{\gamma^{\mathrm{2}} }{\gamma^{\mathrm{2}} +\beta\gamma+\gamma\alpha}\:\bigstar \\ $$$$=\frac{\alpha^{\mathrm{2}}…
Question Number 104062 by bramlex last updated on 19/Jul/20 $$\begin{cases}{\frac{{x}}{{y}}\:+\:\frac{{y}}{{x}}\:=\:\frac{\mathrm{13}}{\mathrm{6}}}\\{{x}+{y}\:=\:\mathrm{5}}\end{cases} \\ $$$${find}\:{the}\:{solution} \\ $$ Commented by Rasheed.Sindhi last updated on 19/Jul/20 $${An}\:{Other}\:{Way}\:_{\searrow} ^{\nearrow} \:\: \\…
Question Number 169585 by Shrinava last updated on 03/May/22 Commented by mr W last updated on 03/May/22 $${please}\:{check}\:{the}\:{question}!\:{one}\:{can}'{t} \\ $$$${image}\:{how}\:{it}\:{looks}\:{like}.\:{maybe} \\ $$$${D}\:{on}\:{BC},\:{E}\:{on}\:{CA}\:{and}\:{F}\:{on}\:{AB}. \\ $$ Commented…
Question Number 169582 by Shrinava last updated on 03/May/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 169579 by infinityaction last updated on 03/May/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 169569 by mnjuly1970 last updated on 03/May/22 $$ \\ $$$$\:\:\:\:\:{f}\left({x}\right)\:=\:{x}\:−\lfloor\frac{{x}}{\mathrm{2}}\rfloor−\lfloor\frac{{x}}{\mathrm{3}}\rfloor−\lfloor\frac{{x}}{\mathrm{6}}\rfloor \\ $$$$\:\:\:\:\:\:\:\:\:\:{R}_{\:{f}} \:=\:? \\ $$$$\:\:\:\:\: \\ $$ Answered by mahdipoor last updated on…
Question Number 104037 by bramlex last updated on 19/Jul/20 $$\left(\mathrm{1}\right)\begin{cases}{{x}^{\mathrm{3}} +{y}^{\mathrm{6}} \:=\:\mathrm{91}}\\{{x}+{y}^{\mathrm{2}} \:=\:\mathrm{7}\:}\end{cases} \\ $$$${find}\:{x}−{y}^{\mathrm{6}} \:. \\ $$$$\left(\mathrm{2}\right)\:\mathrm{2}{a}+\frac{\mathrm{2}}{{a}}\:=\:\mathrm{8}\:\Rightarrow\:\frac{{a}^{\mathrm{6}} +\mathrm{1}}{{a}^{\mathrm{3}} }\:? \\ $$ Answered by bemath…
Question Number 104023 by I want to learn more last updated on 18/Jul/20 Commented by I want to learn more last updated on 18/Jul/20 .A man answers 10 maths problems, one after the other. He answers the first problem correctly and the second problem incorrectly, for each of the remaining 8 problems the probability that he answers the problem correctly equals to the ratio of the number of problems that he has already answered correctly to the total number of problems that he has already answered. What is the probability that he answers exactly 5 out of 10 problems correctly…