Menu Close

Category: Algebra

x-4-10x-3-6x-1-0-for-those-who-want-an-exact-solution-x-a-bi-x-a-bi-x-c-d-x-c-d-0-x-4-2-a-c-x-3-a-2-4ac-b-2-c-2-d-2-x-2-2-a-c-2-d-2-c-a-2-b-2-x-a-2-b-2-c-2-d-2-0

Question Number 36207 by MJS last updated on 30/May/18 $${x}^{\mathrm{4}} +\mathrm{10}{x}^{\mathrm{3}} +\mathrm{6}{x}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{for}\:\mathrm{those}\:\mathrm{who}\:\mathrm{want}\:\mathrm{an}\:\mathrm{exact}\:\mathrm{solution}… \\ $$$$ \\ $$$$\left({x}−{a}−{b}\mathrm{i}\right)\left({x}−{a}+{b}\mathrm{i}\right)\left({x}−{c}−{d}\right)\left({x}−{c}+{d}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{4}} −\mathrm{2}\left({a}+{c}\right){x}^{\mathrm{3}} +\left({a}^{\mathrm{2}} +\mathrm{4}{ac}+{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{d}^{\mathrm{2}}…

ab-a-b-5-bc-b-c-14-ac-a-c-9-find-a-b-c-

Question Number 101742 by bemath last updated on 04/Jul/20 $$\begin{cases}{{ab}+{a}+{b}\:=\:\mathrm{5}}\\{{bc}\:+\:{b}+{c}\:=\:\mathrm{14}}\\{{ac}\:+\:{a}+{c}\:=\:\mathrm{9}}\end{cases} \\ $$$$\mathrm{find}\:{a}+{b}+{c}\:=\:\_\_\_ \\ $$ Answered by bramlex last updated on 04/Jul/20 $$\left(\mathrm{1}\right)\:{a}\:=\:\frac{\mathrm{5}−{b}}{{b}+\mathrm{1}}\:=\:\frac{\mathrm{9}−{c}}{{c}+\mathrm{1}} \\ $$$$\left(\mathrm{2}\right)\:{b}\:=\:\frac{\mathrm{14}−{c}}{{c}+\mathrm{1}}\: \\…

Question-167278

Question Number 167278 by mnjuly1970 last updated on 11/Mar/22 Answered by mr W last updated on 11/Mar/22 $${f}\left({x}\right)=\frac{\sqrt{{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}}{{x}^{\mathrm{2}} +\mathrm{1}+{x}}=\frac{\mathrm{1}}{\:\sqrt{\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}}+\sqrt{\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{1}}}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{{x}+\frac{\mathrm{1}}{{x}}}+\frac{\mathrm{1}}{\:\sqrt{{x}+\frac{\mathrm{1}}{{x}}}}} \\…

x-2-2-1-5-25-x-

Question Number 167268 by mathlove last updated on 11/Mar/22 $${x}^{\frac{\mathrm{2}}{\:\sqrt[{\mathrm{5}}]{\mathrm{2}}}} =\mathrm{25}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}=? \\ $$ Commented by mkam last updated on 11/Mar/22 $${x}^{\mathrm{2}^{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}} } =\:\mathrm{25} \\ $$$$…

There-are-4-identical-mathematics-books-2-identic-physics-books-and-2-identical-chemistry-books-How-many-ways-to-compile-the-eight-books-on-the-condition-of-the-same-book-are-not-mutually-adjacent

Question Number 101693 by bemath last updated on 04/Jul/20 $$\mathrm{There}\:\mathrm{are}\:\mathrm{4}\:\mathrm{identical}\:\mathrm{mathematics} \\ $$$$\mathrm{books},\:\mathrm{2}\:\mathrm{identic}\:\mathrm{physics}\:\mathrm{books} \\ $$$$\mathrm{and}\:\mathrm{2}\:\mathrm{identical}\:\mathrm{chemistry}\:\mathrm{books} \\ $$$$.\:\mathrm{How}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{to}\:\mathrm{compile}\: \\ $$$$\mathrm{the}\:\mathrm{eight}\:\mathrm{books}\:\mathrm{on}\:\mathrm{the}\:\mathrm{condition} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{same}\:\mathrm{book}\:\mathrm{are}\:\mathrm{not}\:\mathrm{mutually} \\ $$$$\mathrm{adjacent}? \\ $$ Commented…

Question-167231

Question Number 167231 by mathlove last updated on 10/Mar/22 Commented by cortano1 last updated on 10/Mar/22 $$\:\:\mathrm{2}^{\mathrm{x}} .\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{x}}} =\:\mathrm{10} \\ $$$$\:\mathrm{log}\:_{\mathrm{10}} \left(\mathrm{2}^{\mathrm{x}} .\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{x}}} \right)=\mathrm{1} \\…

Q-If-x-y-z-and-determinant-x-x-3-x-4-1-y-y-3-y-4-1-z-z-3-z-4-1-0-Prove-that-xyz-xy-yz-zx-x-y-z-please-help-

Question Number 36154 by SammyKT last updated on 29/May/18 $${Q}.\:\:{If}\:{x}\neq{y}\neq{z}\:\:{and}\:\:\begin{vmatrix}{{x}}&{{x}^{\mathrm{3}} }&{{x}^{\mathrm{4}} −\mathrm{1}}\\{{y}}&{{y}^{\mathrm{3}} }&{{y}^{\mathrm{4}} −\mathrm{1}}\\{{z}\:}&{{z}^{\mathrm{3}} }&{{z}^{\mathrm{4}} −\mathrm{1}}\end{vmatrix}=\mathrm{0} \\ $$$$ \\ $$$${Prove}\:{that}\:\:{xyz}\left({xy}+{yz}+{zx}\right)=\left({x}+{y}+{z}\right) \\ $$$$ \\ $$$${please}\:{help}. \\…

x-yi-2-2-x-yi-1-

Question Number 36153 by 7991 last updated on 29/May/18 $$\frac{\left({x}+{yi}−\mathrm{2}\right)^{\mathrm{2}} }{{x}−{yi}+\mathrm{1}} \\ $$ Commented by Rasheed.Sindhi last updated on 30/May/18 $$\frac{\left\{\left(\mathrm{x}−\mathrm{2}\right)+\mathrm{yi}\right\}^{\mathrm{2}} }{\left(\mathrm{x}+\mathrm{1}\right)−\mathrm{yi}}×\frac{\left(\mathrm{x}+\mathrm{1}\right)+\mathrm{yi}}{\left(\mathrm{x}+\mathrm{1}\right)+\mathrm{yi}} \\ $$$$\frac{\left\{\left(\mathrm{x}−\mathrm{2}\right)+\mathrm{yi}\right\}^{\mathrm{2}} \left\{\left(\mathrm{x}+\mathrm{1}\right)+\mathrm{yi}\right\}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}}…