Menu Close

Category: Algebra

find-all-possible-values-of-x-y-z-in-terms-of-a-b-c-gor-a-triplet-x-y-z-that-satisfy-x-1-y-a-y-1-z-b-z-1-x-c-

Question Number 100976 by  M±th+et+s last updated on 29/Jun/20 $${find}\:{all}\:{possible}\:{values}\:{of}\:{x},{y},{z}\:{in}\:{terms} \\ $$$${of}\:{a},{b},{c}\:{gor}\:{a}\:{triplet}\:\left({x},{y},{z}\right)\:{that}\:{satisfy} \\ $$$$ \\ $$$${x}+\frac{\mathrm{1}}{{y}}={a} \\ $$$$ \\ $$$${y}+\frac{\mathrm{1}}{{z}}={b} \\ $$$$ \\ $$$${z}+\frac{\mathrm{1}}{{x}}={c} \\…

Calculas-2-6-5-3-2-1-3-2-

Question Number 166496 by HongKing last updated on 21/Feb/22 $$\mathrm{Calculas}: \\ $$$$\frac{\mathrm{2}\:\sqrt{\mathrm{6}}}{\:\sqrt{\mathrm{5}}\:+\:\sqrt{\mathrm{3}}\:+\:\sqrt{\mathrm{2}}}\:-\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}\:-\:\sqrt{\mathrm{2}}}\:=\:? \\ $$ Commented by cortano1 last updated on 21/Feb/22 $$\:\frac{\mathrm{2}\sqrt{\mathrm{6}}}{\:\sqrt{\mathrm{5}}+\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)}×\frac{\sqrt{\mathrm{5}}−\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)}{\:\sqrt{\mathrm{5}}−\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)} \\ $$$$=\:\frac{\mathrm{2}\sqrt{\mathrm{6}}\left(\sqrt{\mathrm{5}}−\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right)}{\mathrm{5}−\left(\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}\right)}=−\sqrt{\mathrm{5}}+\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}} \\…

x-2-6x-9-3-x-x-2-6x-9-x-3-

Question Number 100960 by john santu last updated on 29/Jun/20 $$\begin{cases}{\sqrt{{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{9}}\:=\:\mathrm{3}−{x}}\\{\sqrt{{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{9}}\:=\:{x}+\mathrm{3}}\end{cases}\: \\ $$ Commented by bobhans last updated on 29/Jun/20 $$\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{6x}+\mathrm{9}}\:=\:\mid\mathrm{x}−\mathrm{3}\mid\:=\:\mathrm{3}−\mathrm{x}\:\rightarrow\:\mathrm{x}\:\leqslant\:\mathrm{3} \\…

1-2x-y-y-1-y-2x-y-6-

Question Number 100954 by bobhans last updated on 29/Jun/20 $$\begin{cases}{\frac{\mathrm{1}}{\mathrm{2}{x}−{y}}\:+\:\sqrt{{y}}\:=\:\mathrm{1}}\\{\frac{\sqrt{{y}}}{\mathrm{2}{x}−{y}}\:=\:−\mathrm{6}}\end{cases} \\ $$ Commented by Dwaipayan Shikari last updated on 29/Jun/20 $$\:\:\:\:\:\:\:\:\:\frac{−\mathrm{6}}{\:\sqrt{{y}}}=\frac{\mathrm{1}}{\mathrm{2}{x}−{y}}\:\:\:\:\:\:\rightarrow\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\frac{−\mathrm{6}}{\:\sqrt{{y}}}+\sqrt{{y}}=\mathrm{1}\:\:\:\:\Rightarrow{t}^{\mathrm{2}}…

what-the-value-of-angle-formed-by-a-long-needle-and-short-needle-on-analog-clock-that-shows-at-15-50-A-175-o-B-174-o-C-173-o-D-172-o-E-170-o-

Question Number 100908 by bemath last updated on 29/Jun/20 $$\mathrm{what}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{angle} \\ $$$$\mathrm{formed}\:\mathrm{by}\:\mathrm{a}\:\mathrm{long}\:\mathrm{needle}\:\mathrm{and}\: \\ $$$$\mathrm{short}\:\mathrm{needle}\:\mathrm{on}\:\mathrm{analog}\:\mathrm{clock}\: \\ $$$$\mathrm{that}\:\mathrm{shows}\:\mathrm{at}\:\mathrm{15}.\mathrm{50}\:? \\ $$$$\left(\mathrm{A}\right)\:\mathrm{175}^{\mathrm{o}} \:\:\:\left(\mathrm{B}\right)\:\mathrm{174}^{\mathrm{o}} \:\:\:\left(\mathrm{C}\right)\:\mathrm{173}^{\mathrm{o}} \\ $$$$\left(\mathrm{D}\right)\:\mathrm{172}^{\mathrm{o}} \:\:\:\:\left(\mathrm{E}\right)\:\mathrm{170}^{\mathrm{o}} \\ $$…

Question-166419

Question Number 166419 by ajfour last updated on 19/Feb/22 Commented by ajfour last updated on 19/Feb/22 $${Blue}\:{curve}\:\:{y}={x}^{\mathrm{3}} −{x} \\ $$$${Red}\:{curve}\:\:\:\:{y}=\left({x}−{h}\right)−\left({x}−{h}\right)^{\mathrm{3}} +{k} \\ $$$${Find}\:{x}=\:{p}\:\:{when}\:\:{y}={c}. \\ $$…