Menu Close

Category: Algebra

decompose-inside-C-x-F-1-x-1-x-n-1-

Question Number 30599 by abdo imad last updated on 23/Feb/18 $${decompose}\:{inside}\:{C}\left({x}\right)\:\:{F}=\:\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)\left({x}^{{n}} \:−\mathrm{1}\right)}\:. \\ $$ Commented by abdo imad last updated on 25/Feb/18 $${the}\:{roots}\:{of}\:{z}^{{n}} \:−\mathrm{1}=\mathrm{0}\:{are}\:{the}\:{complex}\:{z}_{{k}} =\:{e}^{{i}\frac{\mathrm{2}{k}\pi}{{k}}}…

Question-161668

Question Number 161668 by mnjuly1970 last updated on 21/Dec/21 Answered by mr W last updated on 21/Dec/21 $$\frac{\mathrm{sin}^{\mathrm{2}} \:{x}}{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:{x}}=\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x} \\ $$$$\mathrm{sin}^{\mathrm{4}} \:{x}+\mathrm{sin}^{\mathrm{2}} \:{x}−\mathrm{1}=\mathrm{0}…

x-4-2-1-3-4-x-3-2-1-3-5-x-2-x-12-1-3-0-

Question Number 96131 by bemath last updated on 30/May/20 $$\sqrt[{\mathrm{3}\:\:}]{\left({x}+\mathrm{4}\right)^{\mathrm{2}} }\:+\:\mathrm{4}\:\sqrt[{\mathrm{3}\:\:}]{\left({x}−\mathrm{3}\right)^{\mathrm{2}} }\:+\:\mathrm{5}\:\sqrt[{\mathrm{3}\:\:}]{{x}^{\mathrm{2}} +{x}−\mathrm{12}}\:=\:\mathrm{0} \\ $$ Answered by john santu last updated on 30/May/20 $$\mathrm{let}\:\sqrt[{\mathrm{3}\:\:}]{{x}+\mathrm{4}}\:=\:{u}\:\&\:\sqrt[{\mathrm{3}\:\:}]{{x}−\mathrm{3}}\:=\:{v}\: \\…

factorize-inside-C-x-p-x-1-i-x-n-n-1-i-x-n-n-

Question Number 30593 by abdo imad last updated on 23/Feb/18 $${factorize}\:{inside}\:{C}\left[{x}\right]\:{p}\left({x}\right)=\left(\mathrm{1}+{i}\frac{{x}}{{n}}\right)^{{n}} \:−\left(\mathrm{1}−{i}\frac{{x}}{{n}}\right)^{{n}} . \\ $$ Answered by sma3l2996 last updated on 23/Feb/18 $${p}\left({x}\right)=\left(\mathrm{1}+{ix}/{n}\right)^{{n}} −\left(\mathrm{1}−{ix}/{n}\right)^{{n}} \\…

let-p-x-x-2n-2cos-x-n-1-1-find-roots-lf-p-x-2-factorize-p-x-inside-C-x-3-factorize-p-x-inside-R-x-

Question Number 30592 by abdo imad last updated on 23/Feb/18 $${let}\:{p}\left({x}\right)={x}^{\mathrm{2}{n}} \:−\mathrm{2}{cos}\alpha\:{x}^{{n}} \:+\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{roots}\:{lf}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right){factorize}\:{p}\left({x}\right)\:{inside}\:{R}\left[{x}\right]. \\ $$ Answered by sma3l2996 last…