Menu Close

Category: Algebra

x-y-z-t-gt-0-solve-for-real-numbers-8x-4-64y-4-216z-4-1728t-4-1-x-y-z-t-1-

Question Number 158303 by HongKing last updated on 02/Nov/21 $$\mathrm{x};\mathrm{y};\mathrm{z};\mathrm{t}>\mathrm{0} \\ $$$$\mathrm{solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\mathrm{8x}^{\mathrm{4}} \:+\:\mathrm{64y}^{\mathrm{4}} \:+\:\mathrm{216z}^{\mathrm{4}} \:+\:\mathrm{1728t}^{\mathrm{4}} \:=\:\mathrm{1}}\\{\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:+\:\mathrm{t}\:=\:\mathrm{1}}\end{cases} \\ $$$$ \\ $$ Answered by mr…

0-1-sin-1-x-log-1-x-x-2-dx-

Question Number 158295 by HongKing last updated on 02/Nov/21 $$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{sin}^{-\mathrm{1}} \:\mathrm{x}\:\mathrm{log}\left(\mathrm{1}\:+\:\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:=\:? \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

16x-4-1-2x-1-factorise-it-

Question Number 27213 by shiv15031973@gmail.com last updated on 04/Jan/18 $$\left[\left(\mathrm{16}{x}^{\mathrm{4}} −\mathrm{1}\right)\right]/\left[\mathrm{2}{x}−\mathrm{1}\right]\:{factorise}\:{it} \\ $$ Commented by abdo imad last updated on 03/Jan/18 $$\mathrm{16}\:{x}^{\mathrm{4}} \:−\mathrm{1}\:=\:\:\left(\mathrm{4}{x}^{\mathrm{2}} \right)^{\mathrm{2}} \:−\mathrm{1}\:=\:\left(\mathrm{4}{x}^{\mathrm{2}}…

if-x-y-z-0-then-2-cyc-x-2-x-2-y-2-cyc-x-x-3-z-3-xyz-x-y-z-

Question Number 158276 by HongKing last updated on 01/Nov/21 $$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}\geqslant\mathrm{0}\:\:\mathrm{then}: \\ $$$$\mathrm{2}\:\underset{\boldsymbol{\mathrm{cyc}}} {\sum}\:\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \right)\:\geqslant\:\underset{\boldsymbol{\mathrm{cyc}}} {\sum}\:\mathrm{x}\left(\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{z}^{\mathrm{3}} \right)\:+\:\mathrm{xyz}\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right) \\ $$$$ \\ $$ Terms of…

Question-158272

Question Number 158272 by HongKing last updated on 01/Nov/21 Answered by qaz last updated on 04/Nov/21 $$\Omega=\mathrm{4}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{x}^{\mathrm{2}} \mathrm{lnx}}{\mathrm{x}^{\mathrm{4}} −\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}}…

Solve-for-complex-numbers-x-4-1-i-x-3-2ix-2-i-1-x-1-0-

Question Number 158274 by HongKing last updated on 01/Nov/21 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{complex}\:\mathrm{numbers}: \\ $$$$\mathrm{x}^{\mathrm{4}} \:+\:\left(\mathrm{1}\:+\:\boldsymbol{\mathrm{i}}\right)\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:+\:\mathrm{2}\boldsymbol{\mathrm{ix}}^{\mathrm{2}} \:+\:\left(\boldsymbol{\mathrm{i}}\:-\:\mathrm{1}\right)\boldsymbol{\mathrm{x}}\:-\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$ \\ $$ Answered by mindispower last updated on…