Menu Close

Category: Algebra

Question-91166

Question Number 91166 by student work last updated on 28/Apr/20 Commented by Prithwish Sen 1 last updated on 28/Apr/20 $$\mathrm{the}\:\mathrm{curves} \\ $$$$\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} \:\mathrm{can}\:\mathrm{meet}\:\mathrm{at}\:\mathrm{atmost}\:\mathrm{two}\:\mathrm{points}\overset{} {.}…

Question-25619

Question Number 25619 by aplus last updated on 12/Dec/17 Answered by prakash jain last updated on 12/Dec/17 $${ab}+{cd}=\mathrm{38}\:\:\left({i}\right) \\ $$$${ac}+{bd}=\mathrm{34}\:\:\:\left({ii}\right) \\ $$$${ad}+{bc}=\mathrm{43}\:\:\:\left({iii}\right) \\ $$$${add}\:\left({i}\right)\:{and}\:\left({ii}\right) \\…

if-1-x-y-2-3-z-t-4-prove-that-x-2-y-2-1-xz-yt-3-6-3-3-xz-yt-9-z-2-t-2-11-12-

Question Number 156661 by MathSh last updated on 13/Oct/21 $$\mathrm{if}\:\:\mathrm{1}\leqslant\mathrm{x}\:\:;\:\:\mathrm{y}\leqslant\mathrm{2}\:\:;\:\:\mathrm{3}\leqslant\mathrm{z}\:\:;\:\:\mathrm{t}\leqslant\mathrm{4}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{1}}{\mathrm{xz}+\mathrm{yt}+\mathrm{3}}\:+\:\frac{\sqrt{\mathrm{6}}}{\mathrm{3}}\:\leqslant\:\frac{\mathrm{3}+\mathrm{xz}+\mathrm{yt}}{\mathrm{9}+\mathrm{z}^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} }\:+\:\frac{\mathrm{11}}{\mathrm{12}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

possible-or-not-a-a-b-b-gt-a-b-b-a-with-below-conditions-case-1-a-gt-b-gt-1-case-2-0-lt-b-lt-a-lt-1-

Question Number 25589 by behi.8.3.4.17@gmail.com last updated on 11/Dec/17 $$\boldsymbol{{possible}}\:\boldsymbol{{or}}\:\boldsymbol{{not}}\:? \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{{a}}^{\boldsymbol{{a}}} +\boldsymbol{{b}}^{\boldsymbol{{b}}} >\:\boldsymbol{{a}}^{\boldsymbol{{b}}} +\boldsymbol{{b}}^{\boldsymbol{{a}}} \\ $$$$\boldsymbol{{with}}\:\boldsymbol{{below}}\:\boldsymbol{{conditions}}: \\ $$$$\left.\:\boldsymbol{{case}}\:\mathrm{1}\right)\:\:\boldsymbol{{a}}>\boldsymbol{{b}}>\mathrm{1} \\ $$$$\left.\boldsymbol{{case}}\:\mathrm{2}\right)\:\:\:\:\mathrm{0}<\boldsymbol{{b}}<\boldsymbol{{a}}<\mathrm{1} \\ $$ Commented by…

I-0-1-2-ln-x-x-1-2-1-x-2-ln-3-x-dx-

Question Number 156662 by MathSh last updated on 13/Oct/21 $$\boldsymbol{\mathrm{I}}\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{2}\:\mathrm{ln}\:\mathrm{x}\:-\:\mathrm{x}\:+\:\frac{\mathrm{1}}{\mathrm{2}}}{\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} \right)\:\mathrm{ln}^{\mathrm{3}} \:\mathrm{x}}\:\mathrm{dx}\:=\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Sirs-please-give-me-the-general-solutions-to-a-quadratic-ineqality-1-ax-2-bx-c-gt-0-2-ax-2-bx-c-0-3-ax-2-bx-c-lt-0

Question Number 156652 by Tawa11 last updated on 13/Oct/21 $$\mathrm{Sirs},\:\mathrm{please}\:\mathrm{give}\:\mathrm{me}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solutions}\:\mathrm{to}\:\mathrm{a}\:\mathrm{quadratic}\:\mathrm{ineqality}. \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\mathrm{ax}^{\mathrm{2}} \:\:\:+\:\:\:\mathrm{bx}\:\:\:+\:\:\:\mathrm{c}\:\:\:\:>\:\:\:\:\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\mathrm{ax}^{\mathrm{2}} \:\:\:+\:\:\:\mathrm{bx}\:\:\:+\:\:\:\mathrm{c}\:\:\:\:\geqslant\:\:\:\:\mathrm{0} \\ $$$$\left(\mathrm{3}\right)\:\:\:\:\:\:\mathrm{ax}^{\mathrm{2}} \:\:\:+\:\:\:\mathrm{bx}\:\:\:+\:\:\:\mathrm{c}\:\:\:\:<\:\:\:\:\mathrm{0} \\ $$$$\left(\mathrm{4}\right)\:\:\:\:\:\:\mathrm{ax}^{\mathrm{2}} \:\:\:+\:\:\:\mathrm{bx}\:\:\:+\:\:\:\mathrm{c}\:\:\:\:\leqslant\:\:\:\:\mathrm{0} \\ $$ Answered…