Menu Close

Category: Algebra

k-1-n-k-4k-2-1-2k-3-

Question Number 155745 by cortano last updated on 04/Oct/21 $$\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\frac{\mathrm{k}}{\left(\mathrm{4k}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{2k}+\mathrm{3}\right)}\right)=? \\ $$ Answered by amin96 last updated on 04/Oct/21 $$\underbrace{\frac{{a}}{\mathrm{2}{k}−\underset{\mathrm{4}{k}^{\mathrm{2}} +\mathrm{8}{k}+\mathrm{3}} {\mathrm{1}}}}+\underset{\mathrm{4}{k}^{\mathrm{2}}…

A-a-b-IR-2-a-2-b-2-1-prove-that-A-can-t-be-written-as-the-cartesian-product-of-two-parts-of-IR-

Question Number 155729 by henderson last updated on 03/Oct/21 $$\mathrm{A}=\left\{\left({a},{b}\right)\in\mathrm{IR}^{\mathrm{2}} \:/\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \leqslant\mathrm{1}\right\} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{A}\:\mathrm{can}'\mathrm{t}\:\mathrm{be}\:\mathrm{written}\:\mathrm{as}\:\mathrm{the}\:\mathrm{cartesian} \\ $$$$\mathrm{product}\:\mathrm{of}\:\mathrm{two}\:\mathrm{parts}\:\mathrm{of}\:\mathrm{IR}. \\ $$ Answered by Kamel last updated on…

x-2-x-a-x-a-a-R-solve-for-x-

Question Number 90194 by behi83417@gmail.com last updated on 21/Apr/20 $$\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{a}}}+\sqrt{\boldsymbol{\mathrm{x}}}=\boldsymbol{\mathrm{a}}\:\:\:\:\:\left(\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}\right) \\ $$$$\mathrm{solve}\:\mathrm{for}:\:\:\mathrm{x}\:\:. \\ $$ Answered by ajfour last updated on 22/Apr/20 $${let}\:\sqrt{{x}}={t} \\ $$$${t}^{\mathrm{4}}…

Find-1-sin-2-6-1-sin-2-42-1-sin-2-66-1-sin-2-78-

Question Number 155724 by mathdanisur last updated on 03/Oct/21 $$\mathrm{Find}: \\ $$$$\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \mathrm{6}^{°} }\:+\:\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \mathrm{42}°}\:+\:\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \mathrm{66}°}\:+\:\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \mathrm{78}°}\:=\:? \\ $$ Answered by som(math1967) last updated on…

Question-90160

Question Number 90160 by A8;15: last updated on 21/Apr/20 Answered by TANMAY PANACEA. last updated on 21/Apr/20 $${put}\:{x}=\mathrm{1}\:{in}\:{RHS} \\ $$$$\sqrt{\mathrm{61}+\mathrm{6}−\mathrm{3}}\:=\mathrm{8} \\ $$$${put}\:{x}=\mathrm{1}\:{LHS} \\ $$$$\mathrm{16}^{\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\:}\right)^{\mathrm{2}} }…