Menu Close

Category: Algebra

determinant-2-3-x-1-2-2-3-x-x-

Question Number 151205 by EDWIN88 last updated on 19/Aug/21 $$\underbrace{ }\:\begin{array}{|c|c|}{\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{x}} +\mathrm{1}\:=\left(\mathrm{2}\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\right)^{{x}} }\\{{x}\:=?\:}\\\hline\end{array} \\ $$ Answered by bramlexs22 last updated on 19/Aug/21 $$\:\frac{\mathrm{1}}{\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)^{\mathrm{x}} }\:+\:\mathrm{1}\:=\:\frac{\mathrm{2}^{\mathrm{x}} }{\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)^{\frac{\mathrm{x}}{\mathrm{2}}}…

Find-the-coefficient-of-x-9-from-expression-1-x-1-2x-2-1-3x-3-1-4x-4-1-5x-5-1-10x-10-

Question Number 151211 by EDWIN88 last updated on 19/Aug/21 $$\:{Find}\:{the}\:{coefficient}\:{of}\:{x}^{\mathrm{9}} \: \\ $$$${from}\:{expression}\: \\ $$$$\:\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{3}{x}^{\mathrm{3}} \right)\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{4}} \right)\left(\mathrm{1}+\mathrm{5}{x}^{\mathrm{5}} \right)…\left(\mathrm{1}+\mathrm{10}{x}^{\mathrm{10}} \right) \\ $$ Answered by Olaf_Thorendsen…

Show-that-a-group-order-100-is-not-simple-

Question Number 85664 by Jidda28 last updated on 23/Mar/20 $$\boldsymbol{{S}\mathrm{how}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{group}}\:\boldsymbol{\mathrm{order}}\:\mathrm{100}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{not}}\:\boldsymbol{\mathrm{simple}} \\ $$ Commented by mind is power last updated on 24/Mar/20 $$\mathrm{100}=\mathrm{2}^{\mathrm{2}} .\mathrm{5}^{\mathrm{2}} \\ $$$${let}\:{see}\:{sylow}\:{Theorem}…

If-a-b-R-satisfy-a-4-b-4-6a-2-b-2-9-and-ab-a-b-a-b-11-then-a-2-b-2-

Question Number 151198 by liberty last updated on 19/Aug/21 $$\mathrm{If}\:{a},\mathrm{b}\in\mathrm{R}\:\mathrm{satisfy}\:{a}^{\mathrm{4}} +{b}^{\mathrm{4}} −\mathrm{6}{a}^{\mathrm{2}} {b}^{\mathrm{2}} =\mathrm{9}\:{and} \\ $$$${ab}\left({a}−{b}\right)\left({a}+{b}\right)=−\mathrm{11}\:\mathrm{then}\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =? \\ $$ Answered by EDWIN88 last updated…

In-ABC-the-following-relationship-holds-golden-ratio-sinA-sinB-sinC-lt-1-1-2-

Question Number 151189 by mathdanisur last updated on 18/Aug/21 $$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC}\:\:\mathrm{the}\:\mathrm{following}\:\mathrm{relationship} \\ $$$$\mathrm{holds}:\:\left(\boldsymbol{\varphi}-\mathrm{golden}\:\mathrm{ratio}\right) \\ $$$$\mathrm{sinA}\:+\:\frac{\mathrm{sinB}}{\boldsymbol{\varphi}}\:+\:\frac{\mathrm{sinC}}{\boldsymbol{\varphi}}\:<\:\frac{\mathrm{1}}{\boldsymbol{\varphi}}\:+\:\frac{\mathrm{1}+\sqrt{\boldsymbol{\varphi}}+\boldsymbol{\varphi}}{\mathrm{2}\boldsymbol{\varphi}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

The-quadratic-equations-x-2-6x-a-0-and-x-2-cx-6-0-have-one-root-in-common-The-other-roots-of-the-first-and-second-equations-are-integers-in-the-ratio-4-3-Then-find-the-common-root-

Question Number 20118 by Tinkutara last updated on 22/Aug/17 $$\mathrm{The}\:\mathrm{quadratic}\:\mathrm{equations}\:{x}^{\mathrm{2}} \:−\:\mathrm{6}{x}\:+\:{a}\:=\:\mathrm{0} \\ $$$$\mathrm{and}\:{x}^{\mathrm{2}} \:−\:{cx}\:+\:\mathrm{6}\:=\:\mathrm{0}\:\mathrm{have}\:\mathrm{one}\:\mathrm{root}\:\mathrm{in} \\ $$$$\mathrm{common}.\:\mathrm{The}\:\mathrm{other}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{and}\:\mathrm{second}\:\mathrm{equations}\:\mathrm{are}\:\mathrm{integers}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{ratio}\:\mathrm{4}\::\:\mathrm{3}.\:\mathrm{Then},\:\mathrm{find}\:\mathrm{the}\:\mathrm{common} \\ $$$$\mathrm{root}. \\ $$ Answered…

If-a-and-b-0-are-the-roots-of-the-equation-x-2-ax-b-0-then-find-the-least-value-of-x-2-ax-b-x-R-

Question Number 20116 by Tinkutara last updated on 22/Aug/17 $$\mathrm{If}\:{a}\:\mathrm{and}\:{b}\:\left(\neq\:\mathrm{0}\right)\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:{x}^{\mathrm{2}} \:+\:{ax}\:+\:{b}\:=\:\mathrm{0},\:\mathrm{then}\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{least}\:\mathrm{value}\:\mathrm{of}\:{x}^{\mathrm{2}} \:+\:{ax}\:+\:{b}\:\left({x}\:\in\:{R}\right). \\ $$ Answered by ajfour last updated on 22/Aug/17…