Question Number 150600 by mathdanisur last updated on 13/Aug/21 $$\mathrm{xyz}\:=\:\mathrm{10} \\ $$$$\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:-\:\mathrm{7} \\ $$$$\mathrm{xy}\:+\:\mathrm{xz}\:+\:\mathrm{yz}\:=\:\mathrm{2} \\ $$$$\mathrm{Find}\:\:\frac{\mathrm{xy}}{\mathrm{z}}\:+\:\frac{\mathrm{xz}}{\mathrm{y}}\:+\:\frac{\mathrm{yz}}{\mathrm{x}}\:=\:? \\ $$ Answered by amin96 last updated on 13/Aug/21…
Question Number 150597 by mathdanisur last updated on 13/Aug/21 Answered by Olaf_Thorendsen last updated on 13/Aug/21 $$\frac{\overline {{nnn}…{nn}}}{{n}+{n}+{n}…{n}}\:=\:\frac{{n}\underset{{p}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\sum}}\mathrm{10}^{{p}} }{{kn}}\:=\:\frac{\frac{\mathrm{1}−\mathrm{10}^{{k}} }{\mathrm{1}−\mathrm{10}}}{{k}} \\ $$$$=\:\frac{\mathrm{10}^{{k}} −\mathrm{1}}{\mathrm{9}{k}}…
Question Number 150603 by mathdanisur last updated on 13/Aug/21 $$\mathrm{Compare}: \\ $$$$\boldsymbol{\mathrm{x}}=\mathrm{sin}\left(\mathrm{165}°\right) \\ $$$$\boldsymbol{\mathrm{y}}=\mathrm{cos}\left(\mathrm{165}°\right) \\ $$$$\boldsymbol{\mathrm{z}}=\mathrm{tan}\left(\mathrm{165}°\right) \\ $$ Answered by ajfour last updated on 13/Aug/21…
Question Number 150599 by mathdanisur last updated on 13/Aug/21 $$\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}} \:=\:? \\ $$ Commented by n0y0n last updated on 13/Aug/21 $$\mathrm{limit}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{exist} \\ $$$$ \\…
Question Number 150585 by bekzodjumayev last updated on 13/Aug/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\underset{\mathrm{0}} {\overset{\pi} {\int}}{cosx}^{\mathrm{2}} {dx}}{{x}}=?? \\ $$$${Help} \\ $$ Commented by mr W last updated on…
Question Number 19507 by Tinkutara last updated on 12/Aug/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{three}\:\mathrm{points}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{are} \\ $$$$\mathrm{collinear}\:\mathrm{if}\:\begin{vmatrix}{{z}_{\mathrm{1}} }&{\bar {{z}}_{\mathrm{1}} }&{\mathrm{1}}\\{{z}_{\mathrm{2}} }&{\bar {{z}}_{\mathrm{2}} }&{\mathrm{1}}\\{{z}_{\mathrm{3}} }&{\bar {{z}}_{\mathrm{3}} }&{\mathrm{1}}\end{vmatrix}=\:\mathrm{0} \\…
Question Number 19508 by Tinkutara last updated on 12/Aug/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{perpendicular} \\ $$$$\mathrm{drawn}\:\mathrm{from}\:\mathrm{the}\:\mathrm{point}\:{z}_{\mathrm{0}} \:\mathrm{to}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{line}\:\bar {\alpha}{z}\:+\:\alpha\bar {{z}}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{is} \\ $$$${p}\:=\:\mid\frac{\bar {\alpha}{z}_{\mathrm{0}} \:+\:\alpha\bar {{z}}_{\mathrm{0}} \:+\:{c}}{\mathrm{2}\:\mid\alpha\mid}\mid. \\ $$…
Question Number 19505 by Tinkutara last updated on 12/Aug/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{two}\:\mathrm{straight}\:\mathrm{lines}\:\mathrm{with} \\ $$$$\mathrm{complex}\:\mathrm{slopes}\:\mu_{\mathrm{1}} \:\mathrm{and}\:\mu_{\mathrm{2}} \:\mathrm{are}\:\mathrm{parallel} \\ $$$$\mathrm{and}\:\mathrm{perpendicular}\:\mathrm{according}\:\mathrm{as}\:\mu_{\mathrm{1}} \:=\:\mu_{\mathrm{2}} \\ $$$$\mathrm{and}\:\mu_{\mathrm{1}} \:+\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\:\mathrm{Hence}\:\mathrm{if}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{lines}\:\bar {\alpha}{z}\:+\:\alpha\bar {{z}}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{and}\:\bar…
Question Number 19506 by Tinkutara last updated on 12/Aug/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{joining}\:\mathrm{the}\:\mathrm{points}\:{z}_{\mathrm{1}} \:\mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{can}\:\mathrm{be}\:\mathrm{put} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:{z}\:=\:{tz}_{\mathrm{1}} \:+\:\left(\mathrm{1}\:−\:{t}\right){z}_{\mathrm{2}} ,\:\mathrm{where} \\ $$$${t}\:\mathrm{is}\:\mathrm{a}\:\mathrm{parameter}. \\ $$ Answered by ajfour…
Question Number 19499 by tawa tawa last updated on 12/Aug/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{of}\:\:\mathrm{2}^{\mathrm{253}} \\ $$ Answered by Tinkutara last updated on 12/Aug/17 $$\mathrm{Cyclicity}\:\mathrm{of}\:\mathrm{2}\:=\:\mathrm{4}\:\left(\mathrm{2},\:\mathrm{4},\:\mathrm{8},\:\mathrm{6}\right) \\ $$$$\mathrm{253}\:\equiv\:\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{4}\right) \\ $$$$\therefore\:\mathrm{2}^{\mathrm{253}}…