Menu Close

Category: Algebra

Question-144549

Question Number 144549 by mathdanisur last updated on 26/Jun/21 Answered by qaz last updated on 27/Jun/21 $$\mathrm{if}\:\mathrm{y}=\mathrm{z}=\mathrm{t}=\mathrm{2},\mathrm{x}=\mathrm{3},\mathrm{this}\:\mathrm{inequality}\:\mathrm{does}\:\mathrm{not}\:\mathrm{hold}…. \\ $$ Terms of Service Privacy Policy Contact:…

Let-a-b-gt-0-and-a-b-2-Prove-that-1-a-3-b-3-2-2-1-ab-1-2-a-2-b-2-2-2-1-ab-1-

Question Number 144537 by loveineq last updated on 26/Jun/21 $$\mathrm{Let}\:{a},{b}>\mathrm{0}\:\mathrm{and}\:{a}+{b}\:=\:\mathrm{2}.\:\mathrm{Prove}\:\mathrm{that}\:\:\:\:\:\:\:\:\:\: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} }{\mathrm{2}}−\mathrm{2}\left(\mathrm{1}−{ab}\right)\:\geqslant\:\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{2}\left(\mathrm{1}−{ab}\right)\:\leqslant\:\mathrm{1} \\ $$ Answered by mnjuly1970 last updated…

Prove-by-mathematical-induction-that-n-4-4n-2-11-is-divisible-by-16-

Question Number 78948 by TawaTawa last updated on 21/Jan/20 $$\mathrm{Prove}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction}\:\mathrm{that}. \\ $$$$\:\:\:\mathrm{n}^{\mathrm{4}} \:+\:\mathrm{4n}^{\mathrm{2}} \:+\:\mathrm{11}\:\:\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{16} \\ $$ Commented by john santu last updated on 21/Jan/20 $${let}\:{p}\left({n}\right)\:=\:{n}^{\mathrm{4}}…

Solve-for-real-positive-numbers-the-equation-z-log-3-z-log-4-z-log-5-z-log-6-

Question Number 144470 by mathdanisur last updated on 25/Jun/21 $${Solve}\:{for}\:{real}\:{positive}\:{numbers}\:{the} \\ $$$${equation}: \\ $$$$\boldsymbol{{z}}^{\boldsymbol{{log}}\left(\mathrm{3}\right)} \:+\:\boldsymbol{{z}}^{\boldsymbol{{log}}\left(\mathrm{4}\right)} \:+\:\boldsymbol{{z}}^{\boldsymbol{{log}}\left(\mathrm{5}\right)} \:=\:\boldsymbol{{z}}^{\boldsymbol{{log}}\left(\mathrm{6}\right)} \\ $$ Terms of Service Privacy Policy Contact:…

Find-all-positive-integers-n-for-which-n-2-96-is-a-perfect-square-

Question Number 13395 by Tinkutara last updated on 19/May/17 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers}\:{n}\:\mathrm{for}\:\mathrm{which} \\ $$$${n}^{\mathrm{2}} \:+\:\mathrm{96}\:\mathrm{is}\:\mathrm{a}\:\mathrm{perfect}\:\mathrm{square}. \\ $$ Answered by ajfour last updated on 19/May/17 $$\left({n}+{m}\right)^{\mathrm{2}} ={n}^{\mathrm{2}} +\mathrm{96}…