Menu Close

Category: Algebra

Find-the-equation-to-the-two-circles-each-of-which-touch-the-three-circle-x-2-y-2-4a-2-x-2-y-2-2ax-0-x-2-y-2-2ax-0-

Question Number 77990 by peter frank last updated on 12/Jan/20 $${Find}\:{the}\:{equation}\:{to}\:{the} \\ $$$${two}\:{circles}\:{each}\:{of} \\ $$$${which}\:{touch}\:{the}\:{three}\:{circle} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{ax}=\mathrm{0} \\ $$$${x}^{\mathrm{2}}…

If-P-1-P-2-P-3-will-be-taken-as-point-in-an-Argand-diagram-representing-complex-number-Z-1-Z-2-Z-3-and-point-P-1-P-2-P-3-is-an-equalateral-triangle-show-that-Z-2-Z-3-2-Z-3-Z-1-

Question Number 77991 by peter frank last updated on 12/Jan/20 $${If}\:\:{P}_{\mathrm{1}} \:\:{P}_{\mathrm{2}} \:\:{P}_{\mathrm{3}} \:\:{will}\:{be}\:{taken} \\ $$$${as}\:{point}\:{in}\:{an}\:{Argand} \\ $$$${diagram}\:{representing} \\ $$$${complex}\:{number} \\ $$$${Z}_{\mathrm{1}} ,{Z}_{\mathrm{2}} ,{Z}_{\mathrm{3}} \:\:{and}\:{point}…

find-x-x-8-x-

Question Number 12446 by tawa last updated on 22/Apr/17 $$\mathrm{find}\:\mathrm{x} \\ $$$$\sqrt{\mathrm{x}}\:\:=\:\:\mathrm{8}^{\mathrm{x}} \\ $$ Commented by mrW1 last updated on 23/Apr/17 $${For}\:{equation}\:\sqrt{{x}}={a}^{{x}} \:{the}\:{solution}\:{is} \\ $$$${x}=−\frac{{W}\left(−\mathrm{2ln}\:{a}\right)}{\mathrm{2ln}\:{a}}…

10-20-13-45-

Question Number 143507 by Billy last updated on 15/Jun/21 $$\mathrm{10}\sqrt{\mathrm{20}}+\mathrm{13}\sqrt{\mathrm{45}} \\ $$ Answered by qaz last updated on 15/Jun/21 $$\mathrm{10}\sqrt{\mathrm{20}}+\mathrm{13}\sqrt{\mathrm{45}} \\ $$$$=\mathrm{10}×\mathrm{2}\sqrt{\mathrm{5}}+\mathrm{13}×\mathrm{3}\sqrt{\mathrm{5}} \\ $$$$=\left(\mathrm{20}+\mathrm{39}\right)\sqrt{\mathrm{5}} \\…

does-i-1-p-i-converge-p-i-P-

Question Number 12414 by FilupS last updated on 21/Apr/17 $$\mathrm{does}\:\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{p}_{{i}} \:\:\:\mathrm{converge},\:\:\:\:{p}_{{i}} \in\mathbb{P} \\ $$ Answered by prakash jain last updated on 22/Apr/17 $$\mathrm{There}\:\mathrm{are}\:\mathrm{infinitely}\:\mathrm{many}\:\mathrm{primes}.…