Menu Close

Category: Arithmetic

Question-226455

Question Number 226455 by Spillover last updated on 29/Nov/25 Answered by Ghisom_ last updated on 29/Nov/25 $$\frac{\mathrm{2}−{x}^{\mathrm{2}} }{\left(\mathrm{1}−{x}\right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}=\frac{\mathrm{1}+\mathrm{1}−{x}^{\mathrm{2}} }{\left(\mathrm{1}−{x}\right)\sqrt{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}\right)}}= \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{3}/\mathrm{2}} \left(\mathrm{1}+{x}\right)^{\mathrm{1}/\mathrm{2}} }+\frac{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}−{x}\right)^{\mathrm{3}/\mathrm{2}} \left(\mathrm{1}+{x}\right)^{\mathrm{1}/\mathrm{2}}…

Question-226464

Question Number 226464 by Spillover last updated on 29/Nov/25 Commented by Frix last updated on 29/Nov/25 $$\mathrm{By}\:\mathrm{parts} \\ $$$${u}'=\mathrm{1}\:\rightarrow\:{u}={x} \\ $$$${v}=\mathrm{cot}^{−\mathrm{1}} \:\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)\:\rightarrow\:{v}'=−\frac{\mathrm{2}{x}−\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}\right)}…

Question-225599

Question Number 225599 by Jubr last updated on 04/Nov/25 Commented by Frix last updated on 04/Nov/25 $$\mathrm{If}\:{a},\:{b},\:{c},\:{d}\:\in\mathbb{R}\:\mathrm{no}\:\mathrm{maximum}\:\mathrm{exists}. \\ $$$$\mathrm{Let}\:{a}={b}=−{r};\:{c}=\mathrm{1};\:{d}=\mathrm{2}{r} \\ $$$$\left(\mathrm{1}−{r}\right)^{\mathrm{2}} \left(\mathrm{1}+\mathrm{2}{r}\right)=\mathrm{1}−\mathrm{3}{r}^{\mathrm{2}} +\mathrm{2}{r}^{\mathrm{3}} \\ $$$$\underset{{r}\rightarrow+\infty}…

Question-224305

Question Number 224305 by gregori last updated on 01/Sep/25 Answered by fkwow344 last updated on 01/Sep/25 $$\mathrm{Let}'\mathrm{s}\:\mathrm{set}\:\mathrm{as}\:\overset{\rightarrow} {\boldsymbol{\mathrm{v}}}_{\mathrm{1}} =\left(\mathrm{2},\mathrm{1}\right)^{\intercal} \:,\:\overset{\rightarrow} {\boldsymbol{\mathrm{v}}}_{\mathrm{2}} =\left(\mathrm{1},\mathrm{0}\right)^{\intercal} \\ $$$${A}={PJP}^{−\mathrm{1}} \:\left(\mathrm{Jordan}\:\mathrm{decomposition}\right)…

Calculate-I-0-1-t-1-sh-t-2-dt-

Question Number 224100 by Jgrads last updated on 19/Aug/25 $$\mathrm{Calculate}\:\mathrm{I}=\underset{\:\mathrm{0}} {\int}^{\:+\infty} \left[\frac{\mathrm{1}}{\mathrm{t}}−\frac{\mathrm{1}}{\mathrm{sh}\left(\mathrm{t}\right)}\right]^{\:\mathrm{2}} \mathrm{dt} \\ $$ Answered by MathematicalUser2357 last updated on 28/Aug/25 $$\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{{t}}−\frac{\mathrm{1}}{\mathrm{sinh}\:{t}}\right)^{\mathrm{2}}…