Menu Close

Category: Arithmetic

In-an-AP-if-the-m-th-term-is-n-and-the-n-th-term-is-m-where-m-is-not-equal-to-n-find-1-The-value-of-m-n-th-term-2-The-p-th-term-

Question Number 7399 by Tawakalitu. last updated on 27/Aug/16 $${In}\:{an}\:{AP}\:,\:{if}\:{the}\:{m}^{{th}} \:{term}\:{is}\:{n}\:{and}\:{the}\:{n}^{{th}} \:{term} \\ $$$${is}\:{m}.\:{where}\:{m}\:{is}\:{not}\:{equal}\:{to}\:{n}.\:{find} \\ $$$$\left(\mathrm{1}\right)\:{The}\:{value}\:{of}\:\left({m}\:+\:{n}\right)^{{th}} \:{term} \\ $$$$\left(\mathrm{2}\right)\:{The}\:{p}^{{th}} \:{term}. \\ $$ Answered by Yozzia…

Question-7263

Question Number 7263 by Tawakalitu. last updated on 19/Aug/16 Commented by Rasheed Soomro last updated on 20/Aug/16 $${I}\:{have}\:{answered}\:{your}\:{question}#\mathrm{6852} \\ $$$${which}\:{is}\:{very}\:{resembling}\:{to}\:{this}\:{question}. \\ $$$${Please}\:{see}\:{if}\:{you}\:{have}\:{not}\:{seen}\:{yet}. \\ $$ Commented…

Question-138320

Question Number 138320 by aliibrahim1 last updated on 12/Apr/21 Answered by Rasheed.Sindhi last updated on 17/Apr/21 $$\mathrm{11}^{{n}} =\left(\mathrm{1}+\mathrm{10}\right)^{{n}} =\begin{pmatrix}{{n}}\\{\mathrm{0}}\end{pmatrix}\left(\mathrm{10}\right)^{\mathrm{0}} +\begin{pmatrix}{{n}}\\{\mathrm{1}}\end{pmatrix}\left(\mathrm{10}\right)^{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:+\begin{pmatrix}{{n}}\\{\mathrm{2}}\end{pmatrix}\left(\mathrm{10}\right)^{\mathrm{2}} +\underset{{divisible}\:{by}\:\mathrm{1000}} {\underbrace{\begin{pmatrix}{{n}}\\{\mathrm{3}}\end{pmatrix}\left(\mathrm{10}\right)^{\mathrm{3}} ….+\begin{pmatrix}{{n}}\\{{n}}\end{pmatrix}\left(\mathrm{10}\right)^{{n}}…

Question-7246

Question Number 7246 by Tawakalitu. last updated on 18/Aug/16 Answered by Yozzia last updated on 19/Aug/16 $${Define}\:{the}\:{number}\:{k}\:{such}\:{that}\: \\ $$$${k}={x}^{{n}+\mathrm{3}} +{y}^{{n}+\mathrm{3}} +{z}^{{n}+\mathrm{3}} −{xyz}\left({x}^{{n}} +{y}^{{n}} +{z}^{{n}} \right)…

Question-7163

Question Number 7163 by Tawakalitu. last updated on 14/Aug/16 Commented by sou1618 last updated on 14/Aug/16 $$\underset{{a}=\mathrm{1}} {\overset{\mathrm{4}} {\sum}}\left(\underset{{b}=\mathrm{0}} {\overset{\mathrm{4}} {\sum}}{a}^{{b}} \right)=\underset{{a}=\mathrm{1}} {\overset{\mathrm{4}} {\sum}}\left({a}^{\mathrm{0}} +{a}^{\mathrm{1}}…