Menu Close

Category: Arithmetic

Expand-x-2-2x-3-respect-to-x-2-a-x-2-2-2-x-2-3-b-x-2-2-2-x-2-3-c-x-2-2-2-x-2-3-d-x-2-2-2-x-2-3-is-it-taylors-theorem-

Question Number 206230 by BaliramKumar last updated on 09/Apr/24 $$\mathrm{Expand}\:\:\:\:{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:+\:\mathrm{3}\:\:\:{respect}\:{to}\:{x}\:=\:−\mathrm{2}. \\ $$$$\left(\mathrm{a}\right)\:\left({x}\:−\:\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}\left({x}\:+\:\mathrm{2}\right)\:+\:\mathrm{3} \\ $$$$\left(\mathrm{b}\right)\:\left({x}\:+\:\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}\left({x}\:+\:\mathrm{2}\right)\:+\:\mathrm{3} \\ $$$$\left(\mathrm{c}\right)\:\left({x}\:+\:\mathrm{2}\right)^{\mathrm{2}} +\:\mathrm{2}\left({x}\:+\:\mathrm{2}\right)\:+\:\mathrm{3} \\ $$$$\left(\mathrm{d}\right)\:\left({x}\:−\:\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}\left({x}\:−\:\mathrm{2}\right)\:−\:\mathrm{3} \\ $$$$…

1-2023-1-2024-1-2025-1-2026-1-

Question Number 206038 by BaliramKumar last updated on 05/Apr/24 $$\sqrt{\mathrm{1}\:+\:\mathrm{2023}\sqrt{\mathrm{1}\:+\:\mathrm{2024}\sqrt{\mathrm{1}+\:\mathrm{2025}\sqrt{\mathrm{1}\:+\:\mathrm{2026}\sqrt{\mathrm{1}\:+\:…………..\infty}}}}}\:=\:?\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$ Answered by mr W last updated on 05/Apr/24 $${x}+\mathrm{1}=\sqrt{\mathrm{1}+{x}\sqrt{\mathrm{1}+\left({x}+\mathrm{1}\right)\sqrt{\mathrm{1}+\left({x}+\mathrm{2}\right)\sqrt{\mathrm{1}+…}}}} \\ $$$$\Rightarrow\mathrm{2024}=\sqrt{\mathrm{1}\:+\:\mathrm{2023}\sqrt{\mathrm{1}\:+\:\mathrm{2024}\sqrt{\mathrm{1}+\:\mathrm{2025}\sqrt{\mathrm{1}\:+\:\mathrm{2026}\sqrt{\mathrm{1}\:+\:…………..\infty}}}}} \\ $$…

is-a-real-number-

Question Number 205577 by BaliramKumar last updated on 25/Mar/24 $$\mathrm{is}\:\infty\:\mathrm{a}\:\mathrm{real}\:\mathrm{number}? \\ $$ Commented by mr W last updated on 25/Mar/24 $${it}\:{is}\:{only}\:{a}\:{symbol}.\:{it}\:{may}\:{have}\:\: \\ $$$${different}\:{meanings}\:{depending}\:{on}\: \\ $$$${in}\:{which}\:{context}\:{it}\:{is}\:{used}.\:…

If-two-roots-of-ax-2-bx-c-0-are-and-then-1-a-2-c-2-1-a-2-c-2-

Question Number 205502 by MATHEMATICSAM last updated on 22/Mar/24 $$\mathrm{If}\:\mathrm{two}\:\mathrm{roots}\:\mathrm{of}\:{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{are}\:\alpha\:\mathrm{and}\: \\ $$$$\beta\:\mathrm{then}\:\frac{\mathrm{1}}{\left({a}\alpha^{\mathrm{2}} \:+\:{c}\right)^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\left({a}\beta^{\mathrm{2}} \:+\:{c}\right)^{\mathrm{2}} }\:=\:? \\ $$ Answered by Rasheed.Sindhi last updated on…

Question-205457

Question Number 205457 by BaliramKumar last updated on 21/Mar/24 Answered by Rasheed.Sindhi last updated on 21/Mar/24 $${x}+\mathrm{log}_{\mathrm{15}} \left(\mathrm{1}+\mathrm{3}^{{x}} \right)={x}\mathrm{log}_{\mathrm{15}} \mathrm{5}+\mathrm{log}_{\mathrm{15}} \mathrm{12} \\ $$$$\mathrm{log}_{\mathrm{15}} \mathrm{15}^{{x}} +\mathrm{log}_{\mathrm{15}}…

Question-205456

Question Number 205456 by BaliramKumar last updated on 21/Mar/24 Answered by Rasheed.Sindhi last updated on 21/Mar/24 $${First}\:{digit}\:{can}\:{be}\:{occuied}\:{in}\:\mathrm{5}\:{ways} \\ $$$${Second}\:{digit}\:{can}\:{be}\:{occuied}\:{in}\:\mathrm{4}\:{ways} \\ $$$${Third}\:{digit}\:{can}\:{be}\:{occuied}\:{in}\:\mathrm{3}\:{ways}. \\ $$$${Total}\:{ways}:\:\mathrm{5}×\mathrm{4}×\mathrm{3}=\mathrm{60} \\ $$$$\left({d}\right)\:{is}\:{correct}.…