Menu Close

Category: Arithmetic

Question-193438

Question Number 193438 by Mingma last updated on 14/Jun/23 Answered by qaz last updated on 14/Jun/23 $${log}_{\mathrm{3}} \left(\mathrm{9}{x}−\mathrm{3}\right)=\mathrm{1}+{log}_{\mathrm{3}} \left(\mathrm{3}{x}−\mathrm{1}\right)\:\:\:\:\:,{log}_{\mathrm{3}} \left({x}−\frac{\mathrm{1}}{\mathrm{3}}\right)={log}_{\mathrm{3}} \left(\mathrm{3}{x}−\mathrm{1}\right)−\mathrm{1} \\ $$$${log}_{\mathrm{3}} \left(\mathrm{3}{x}−\mathrm{1}\right)={y} \\…

Question-193280

Question Number 193280 by Mingma last updated on 09/Jun/23 Answered by AST last updated on 09/Jun/23 $$\mathrm{1000}\overset{\_\_\_\_} {{def}}+\overset{\_\_\_\_} {{abc}}=\mathrm{6000}\overset{\_\_\_\_} {{abc}}+\mathrm{6}\overset{\_\_\_\_} {{def}}\Rightarrow\frac{{def}}{{abc}}=\frac{\mathrm{5999}}{\mathrm{994}}=\frac{\mathrm{857}}{\mathrm{142}} \\ $$$$\Rightarrow\overset{\_\_\_\_\_\_\_\_} {{abcdef}}=\mathrm{142857} \\…

Find-the-first-four-terms-in-the-series-expansion-of-1-3x-5-ascending-power-x-and-state-the-set-of-values-of-x-for-which-this-expansion-is-valid-

Question Number 131054 by benjo_mathlover last updated on 01/Feb/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{first}\:\mathrm{four}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the}\:\mathrm{series}\: \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\frac{\mathrm{1}}{\mathrm{3x}+\mathrm{5}}\:\mathrm{ascending}\:\mathrm{power} \\ $$$$\mathrm{x}\:\mathrm{and}\:\mathrm{state}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:\mathrm{for} \\ $$$$\mathrm{which}\:\mathrm{this}\:\mathrm{expansion}\:\mathrm{is}\:\mathrm{valid}\:. \\ $$ Answered by EDWIN88 last updated on 01/Feb/21…

Question-130936

Question Number 130936 by mathlove last updated on 30/Jan/21 Answered by floor(10²Eta[1]) last updated on 30/Jan/21 $$\mathrm{15}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$$$\mathrm{so}\:\mathrm{15}^{\mathrm{n}} \equiv\mathrm{1}^{\mathrm{n}} =\mathrm{1}\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$$$\Rightarrow\mathrm{3}^{\mathrm{3}^{\mathrm{2007}} } ×\mathrm{15}^{\mathrm{2}^{\mathrm{7777}}…

Question-130817

Question Number 130817 by shaker last updated on 29/Jan/21 Answered by Olaf last updated on 29/Jan/21 $$\mathrm{argth}\left(\mathrm{sh}^{\mathrm{4}} {x}+\mathrm{3sh}^{\mathrm{2}} {x}\right)\:=\:\mathrm{1} \\ $$$$\mathrm{sh}^{\mathrm{4}} {x}+\mathrm{3sh}^{\mathrm{2}} {x}\:=\:\mathrm{th}\left(\mathrm{1}\right)\:=\:\frac{{e}−\frac{\mathrm{1}}{{e}}}{{e}+\frac{\mathrm{1}}{{e}}}\:=\:\frac{{e}^{\mathrm{2}} −\mathrm{1}}{{e}^{\mathrm{2}} +\mathrm{1}}…

Question-65199

Question Number 65199 by rajesh4661kumar@gmail.com last updated on 26/Jul/19 Answered by Tanmay chaudhury last updated on 26/Jul/19 $$\left(\mathrm{1}\right),\left(\mathrm{2},\mathrm{3},\mathrm{4}\right),\left(\mathrm{5},\mathrm{6},\mathrm{7},\mathrm{8},\mathrm{9}\right),\left(\mathrm{10},\mathrm{11},\mathrm{12},\mathrm{13},\mathrm{14},\mathrm{15},\mathrm{16}\right)… \\ $$$$\mathrm{1}{st}\:{group}\:\:{contains}\rightarrow\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:{terms} \\ $$$$\mathrm{2}{nd}\:{group}\:{contains}\:\rightarrow\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\:{terms} \\ $$$$\mathrm{3}{rd}\:\:\:{group}\:\:\:{contains}\rightarrow\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}{terms} \\…