Menu Close

Category: Arithmetic

Question-127486

Question Number 127486 by shaker last updated on 30/Dec/20 Answered by Dwaipayan Shikari last updated on 30/Dec/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{cos}\left({a}_{{k}} {x}\right)−\mathrm{1}}{{x}^{\mathrm{2}} }={y} \\ $$$$\underset{{x}\rightarrow\mathrm{0}}…

Question-127360

Question Number 127360 by bemath last updated on 29/Dec/20 Answered by liberty last updated on 29/Dec/20 $${let}\::\:{a}−\mathrm{7}{b},{a}−\mathrm{6}{b},{a}−\mathrm{5}{b},…,\:{a}+\mathrm{5}{b},\:{a}+\mathrm{6}{b},\:{a}+\mathrm{7}{b}\:{is}\:{AP} \\ $$$${given}\:{condition}\:\rightarrow\begin{cases}{\mathrm{3}{a}−\mathrm{18}{b}=−\mathrm{60};\:{a}−\mathrm{6}{b}=−\mathrm{20}\:\left({the}\:{first}\:\mathrm{3}\:{terms}\right)}\\{\mathrm{3}{a}+\mathrm{18}{b}=\mathrm{84};\:{a}+\mathrm{6}{b}\:=\:\mathrm{28}\:\left({the}\:{last}\:\mathrm{3}\:{terms}\right)}\end{cases} \\ $$$${we}\:{get}\:\begin{cases}{{a}=\mathrm{4}}\\{{b}=\mathrm{4}}\end{cases}.\:{we}\:{want}\:{to}\:{compute}\:{the} \\ $$$${sum}\:{of}\:{the}\:{middle}\:\mathrm{3}\:{terms}\:\Rightarrow{T}_{\mathrm{7}} +{T}_{\mathrm{8}} +{T}_{\mathrm{9}}…

Q-Find-the-remainder-of-dividing-the-following-number-by-7-N-3-10-1-3-10-2-3-10-3-3-10-10-

Question Number 192893 by mnjuly1970 last updated on 30/May/23 $$ \\ $$$$\:\:\:\:\:\:\mathrm{Q}\::\:\mathrm{Find}\:\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{of}\:\:\mathrm{dividing} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{the}\:\mathrm{following}\:\mathrm{number}\:\mathrm{by}\:\:\mathrm{7}\:. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{N}\:=\:\mathrm{3}^{\:\mathrm{10}^{\:\mathrm{1}} } \:+\:\mathrm{3}^{\:\mathrm{10}^{\:\mathrm{2}} \:} \:+\:\mathrm{3}^{\:\mathrm{10}^{\:\mathrm{3}} \:} \:+\:…\:+\:\mathrm{3}^{\:\mathrm{10}^{\:\mathrm{10}} }…

Solve-for-x-6-2x-x-1-5-x-1-2x-13-

Question Number 61479 by Tawa1 last updated on 03/Jun/19 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\:\:\:\:\frac{\mathrm{6}\sqrt{\mathrm{2x}}}{\mathrm{x}\:−\:\mathrm{1}}\:+\:\frac{\mathrm{5}\sqrt{\mathrm{x}\:−\:\mathrm{1}}}{\mathrm{2x}}\:\:\:=\:\:\mathrm{13} \\ $$ Commented by MJS last updated on 03/Jun/19 $$\mathrm{we}\:\mathrm{cannot}\:\mathrm{generally}\:\mathrm{solve}\:\mathrm{this}… \\ $$ Answered by ajfour…

Question-192367

Question Number 192367 by Rupesh123 last updated on 15/May/23 Answered by mehdee42 last updated on 15/May/23 $${t}_{{r}} ={r}−\frac{\mathrm{3}}{\mathrm{2}}\Rightarrow{t}_{{r}+\mathrm{1}} ={r}−\frac{\mathrm{1}}{\mathrm{2}}\:\&\:{t}_{{r}+\mathrm{2}} ={r}+\frac{\mathrm{1}}{\mathrm{2}}\&\:{t}_{{r}+\mathrm{3}} ={r}+\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow{t}_{{r}} {t}_{{r}+\mathrm{1}} {t}_{{r}+\mathrm{2}}…