Question Number 189977 by cherokeesay last updated on 25/Mar/23 Answered by a.lgnaoui last updated on 26/Mar/23 $${the}\:\:{totale}\:{Area}: \\ $$$$\mathrm{2}\left(\mathrm{12}×\mathrm{3},\mathrm{5}+\mathrm{9}×\mathrm{3},\mathrm{5}\right)=\mathrm{147}{m}^{\mathrm{2}} \\ $$$${Area}\:{of}\:{windows}=\mathrm{21}{m}^{\mathrm{2}} \\ $$$${Area}\:{of}\:{tiles}=\mathrm{147}−\mathrm{21}=\mathrm{126}{m}^{\mathrm{2}} =\mathrm{126}×\mathrm{10}^{\mathrm{2}} {cm}^{\mathrm{2}}…
Question Number 189970 by Rupesh123 last updated on 25/Mar/23 Answered by Rasheed.Sindhi last updated on 25/Mar/23 $${x},{y},{x}+{y},{x}−{y}\:\in\mathbb{P}\:\:;\:{x},{y}=? \\ $$$$\bullet{If}\:\:{x}\:{and}\:{y}\:{were}\:{both}\:{odd}\:{primes} \\ $$$$\Rightarrow\mathrm{2}\:\mid\:\left({x}+{y}\right)\Rightarrow{x}+{y}\:\notin\mathbb{P}\:{or}\:{x}+{y}=\mathrm{2} \\ $$$${x}+{y}=\mathrm{2}\:{has}\:{no}\:{solution}\:{in}\:{prime} \\ $$$$\bullet{If}\:{x}={y}=\mathrm{2}\Rightarrow\:{x}+{y},{x}−{y}\:\notin\mathbb{P}…
Question Number 189901 by cherokeesay last updated on 23/Mar/23 Answered by BaliramKumar last updated on 24/Mar/23 $$\mathrm{4}.\:\left(\mathrm{i}\right)\:\mathrm{2}\left[\frac{\mathrm{1}}{\mathrm{2}}\:−\:\frac{\mathrm{1}}{\infty}\right]\:=\:\mathrm{2}\left[\frac{\mathrm{1}}{\mathrm{2}}\:−\:\mathrm{0}\right]\:=\:\mathrm{1} \\ $$ Answered by talminator2856792 last updated on…
Question Number 58804 by Tawa1 last updated on 30/Apr/19 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{x}:\:\:\:\:\mathrm{4}\:\mathrm{cos}\:\mathrm{x}\:+\:\mathrm{3}\:\mathrm{sin}\:\mathrm{x}\:\:=\:\:\mathrm{2} \\ $$ Commented by MJS last updated on 30/Apr/19 $$\mathrm{generally} \\ $$$${a}\mathrm{cos}\:{x}\:+{b}\mathrm{sin}\:{x}\:={c} \\ $$$${x}=\mathrm{2arctan}\:{t} \\…
Question Number 124141 by nico last updated on 01/Dec/20 Answered by Lordose last updated on 01/Dec/20 $$ \\ $$$$\int_{\:\mathrm{0}} ^{\:\infty} \mathrm{e}^{−\mathrm{ix}^{\mathrm{2}} } \mathrm{dx}\:\:\:\:\: \\ $$$$\mathrm{Set}\:\mathrm{u}=\mathrm{x}\sqrt{\mathrm{i}}\:\:\Rightarrow\:\mathrm{du}\:=\:\sqrt{\mathrm{i}}\mathrm{dx}…
Question Number 124116 by danielasebhofoh last updated on 30/Nov/20 Answered by Dwaipayan Shikari last updated on 01/Dec/20 $$\int{x}^{−{x}} {dx} \\ $$$$=\underset{{n}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \int\frac{\left({xlogx}\right)^{{n}} }{{n}!}{dx}…
Question Number 124093 by Don08q last updated on 30/Nov/20 $$\mathrm{The}\:\mathrm{7}{th}\:\mathrm{term}\:\mathrm{of}\:\mathrm{an}\:\mathrm{A}.\mathrm{P}.\:\mathrm{is}\:\mathrm{3}{p}\:+\:\mathrm{5}{q}\:\: \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{18}{th}\:\mathrm{term}\:\mathrm{is}\:\mathrm{19}\left(\mathrm{2}{q}\:−\:{p}\right).\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{first}\:{three}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sequence}. \\ $$ Answered by liberty last updated on 30/Nov/20 $${T}_{\mathrm{7}} \:=\:\mathrm{3}{p}+\mathrm{5}{q}\:;\:{T}_{\mathrm{18}}…
Question Number 189624 by Rupesh123 last updated on 19/Mar/23 Answered by Rasheed.Sindhi last updated on 19/Mar/23 $${x}^{\mathrm{2}} −\left({a}+{b}\right){x}+{ab}={x}^{\mathrm{2}} +\left({c}−\mathrm{6}\right){x}−\mathrm{6}{c}+\mathrm{5} \\ $$$$−\left({a}+{b}\right)={c}−\mathrm{6}\:\:\wedge\:{ab}=\mathrm{5}−\mathrm{6}{c} \\ $$$${c}=−{a}−{b}+\mathrm{6}\:\wedge\:{ab}=\mathrm{5}−\mathrm{6}\left(−{a}−{b}+\mathrm{6}\right) \\ $$$${ab}=\mathrm{6}{a}+\mathrm{6}{b}−\mathrm{31}…
Question Number 189625 by Rupesh123 last updated on 19/Mar/23 Commented by Rupesh123 last updated on 19/Mar/23 Can you explain? Answered by Frix last updated on 19/Mar/23 $$…,{n}−\mathrm{1},{n},{n},{n},{n},{n},{n},{n},{n}+\mathrm{1},{n}+\mathrm{1},{n}+\mathrm{1},{n}+\mathrm{1},{n}+\mathrm{1},{n}+\mathrm{1},{n}+\mathrm{1},{n}+\mathrm{2},……
Question Number 189563 by Rupesh123 last updated on 18/Mar/23 Answered by FelipeLz last updated on 19/Mar/23 $${V}\:=\:\left({r}_{\mathrm{1}} +\mathrm{2}\right)×\left({r}_{\mathrm{2}} +\mathrm{2}\right)×\left({r}_{\mathrm{3}} +\mathrm{2}\right)\:=\:{r}_{\mathrm{1}} {r}_{\mathrm{2}} {r}_{\mathrm{3}} +\mathrm{2}\left({r}_{\mathrm{1}} {r}_{\mathrm{2}} +{r}_{\mathrm{1}}…