Question Number 183989 by HeferH last updated on 01/Jan/23 $$\frac{\sqrt{{x}}\:+\:\sqrt{{x}\:−\:\mathrm{4}{a}}}{\:\sqrt{{x}}\:−\:\sqrt{{x}\:−\:\mathrm{4}{a}}}\:=\:{a}\:\neq\:\mathrm{0} \\ $$$$\:{find}\:“{x}''\:{in}\:{terms}\:{of}\:“{a}''.\: \\ $$ Commented by Frix last updated on 01/Jan/23 $$\mathrm{I}\:\mathrm{get}\:{x}=\left({a}+\mathrm{1}\right)^{\mathrm{2}} \\ $$ Answered…
Question Number 118448 by peter frank last updated on 17/Oct/20 Answered by Olaf last updated on 17/Oct/20 $$\mathrm{A}\:=\:\pi×\mathrm{7}^{\mathrm{2}} −\mathrm{2}\int_{−\mathrm{7}} ^{+\mathrm{7}} \left(\mathrm{7}−\sqrt{\mathrm{49}−{x}^{\mathrm{2}} }\right){dx} \\ $$$$\mathrm{A}\:=\:\mathrm{49}\pi−\mathrm{4}\int_{\mathrm{0}} ^{+\mathrm{7}}…
Question Number 183664 by Rasheed.Sindhi last updated on 28/Dec/22 $$ \\ $$$$\mathcal{H}{ow}\:{many}\:{artificially}\:{made}\:{weights}\:{are}\: \\ $$$$\boldsymbol{{required}}\:\left({minimally}\right)\:{to}\:{weigh} \\ $$$$\:\underline{\mathrm{ONLY}}\:\:\:\:\:\mathrm{1},\mathrm{3},\mathrm{5},…,\mathrm{79}\:{kg}\: \\ $$$${and}\:{what}\:{should}\:{be}\:{they}? \\ $$ Commented by Frix last updated…
Question Number 183646 by Rasheed.Sindhi last updated on 28/Dec/22 $$\mathcal{H}{ow}\:{many}\:{artificially}\:{made}\:{weights}\:{are}\: \\ $$$$\boldsymbol{{required}}\:\left({minimally}\right)\:{to}\:{weigh} \\ $$$$\:\mathrm{1},\mathrm{3},\mathrm{5},…,\mathrm{79}\:{kg}\: \\ $$$${and}\:{what}\:{should}\:{be}\:{they}? \\ $$ Commented by Rasheed.Sindhi last updated on 28/Dec/22…
Question Number 183617 by Rasheed.Sindhi last updated on 27/Dec/22 $$\mathcal{H}{ow}\:{many}\:{artificially}\:{made}\:{weights}\:{are}\: \\ $$$$\boldsymbol{{required}}\:\left({minimally}\right)\:{to}\:{weigh} \\ $$$$\:\mathrm{2},\mathrm{4},\mathrm{6},…,\mathrm{80}\:{kg}\: \\ $$$${and}\:{what}\:{should}\:{be}\:{they}? \\ $$ Commented by Rasheed.Sindhi last updated on 27/Dec/22…
Question Number 183535 by HeferH last updated on 26/Dec/22 $${Who}\:{is}\:{greater}?\:\mathrm{70}^{\mathrm{71}} \:{or}\:\:\mathrm{71}^{\mathrm{70}} \\ $$ Answered by Frix last updated on 26/Dec/22 $$\mathrm{1}^{\mathrm{2}} <\mathrm{2}^{\mathrm{1}} \\ $$$$\mathrm{2}^{\mathrm{3}} <\mathrm{3}^{\mathrm{2}}…
Question Number 183485 by Gamil last updated on 26/Dec/22 $$\:\boldsymbol{\mathrm{L}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}\boldsymbol{\mathrm{sin}}\:\boldsymbol{\mathrm{x}}\:−\mathrm{2}\boldsymbol{\mathrm{tan}}\:\boldsymbol{\mathrm{x}}\:+\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\mathrm{6}\boldsymbol{\mathrm{x}}−\mathrm{2}\boldsymbol{\mathrm{sin}}\:\mathrm{3}\boldsymbol{\mathrm{x}}\:−\mathrm{9}\boldsymbol{\mathrm{x}}^{\mathrm{3}} } \\ $$$$\:\:\boldsymbol{\mathrm{L}}=\:\frac{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}\boldsymbol{\mathrm{sin}}\:\boldsymbol{\mathrm{x}}\:−\mathrm{2}\boldsymbol{\mathrm{tan}}\:\boldsymbol{\mathrm{x}}\:+\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\boldsymbol{\mathrm{x}}^{\mathrm{5}} }}{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{6}\boldsymbol{\mathrm{x}}−\mathrm{2}\boldsymbol{\mathrm{sin}}\:\mathrm{3}\boldsymbol{\mathrm{x}}\:−\mathrm{9}\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\boldsymbol{\mathrm{x}}^{\mathrm{5}} }}\:=\:\frac{\boldsymbol{\mathrm{L}}_{\mathrm{1}} }{\boldsymbol{\mathrm{L}}_{\mathrm{2}} } \\ $$…
Question Number 117818 by snipers237 last updated on 13/Oct/20 $$\:{let}\:{ABC}\:\:{be}\:{a}\:{triangle}\:{AB}={c}\:\:{AC}={b}\:\:{BC}={a} \\ $$$${Show}\:{that}\:{ABC}\:{is}\:{right}\:\Leftrightarrow\:\:{tan}\left(\frac{{B}}{\mathrm{2}}\right)=\frac{{a}+{c}}{{b}}\: \\ $$ Commented by 1549442205PVT last updated on 14/Oct/20 $$\mathrm{Question}\:\mathrm{is}'\mathrm{nt}\:\mathrm{exact}.\mathrm{Example},\Delta\mathrm{ABC} \\ $$$$\mathrm{A}=\mathrm{90}° \\…
Question Number 183318 by salvatore last updated on 25/Dec/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 183263 by Engr_Jidda last updated on 24/Dec/22 $${Derive}\:{the}\:{formular}\:{that}\:{can}\:{be}\:{used}\: \\ $$$${to}\:{count}\:{the}\:{number}\:{of}\:{dissimilar}\:{surds} \\ $$$${obtaining}\:{after}\:{full}\:{expansion}\:{of} \\ $$$$\left(\sum_{{x}=\mathrm{1}} ^{{n}} \sqrt{{x}}\right)^{\mathrm{4}} \:{where}\:{every}\:{x}\:{term}\:{is}\:{a}\:{prime}\:{number}. \\ $$ Commented by mr W…