Menu Close

Category: Arithmetic

Prove-that-p-n-a-1-a-2-a-n-n-n-a-1-a-2-a-n-n-N-

Question Number 45353 by pieroo last updated on 12/Oct/18 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{p}\left(\mathrm{n}\right)=\frac{\boldsymbol{\mathrm{a}}_{\mathrm{1}} +\boldsymbol{\mathrm{a}}_{\mathrm{2}} +…+\boldsymbol{\mathrm{a}}_{\mathrm{n}} }{\mathrm{n}}\:\geqslant\:^{\mathrm{n}} \sqrt{\boldsymbol{\mathrm{a}}_{\mathrm{1}} \boldsymbol{\mathrm{a}}_{\mathrm{2}} …\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} } \\ $$$$\forall\:\mathrm{n}\:\in\boldsymbol{\mathrm{N}} \\ $$ Commented by pieroo last…

1-2-2-3-3-4-4-5-

Question Number 176054 by BaliramKumar last updated on 11/Sep/22 $$\frac{\mathrm{1}}{\mathrm{2}!}\:+\:\frac{\mathrm{2}}{\mathrm{3}!}\:+\:\frac{\mathrm{3}}{\mathrm{4}!}\:+\:\frac{\mathrm{4}}{\mathrm{5}!}\:+\:………….\:\infty\:=\:? \\ $$ Answered by Ar Brandon last updated on 11/Sep/22 $${S}=\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{{n}−\mathrm{1}}{{n}!}=\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}−\underset{{n}=\mathrm{2}}…