Menu Close

Category: Coordinate Geometry

The-foot-of-the-perpendicular-from-a-point-of-the-circle-x-2-y-2-1-z-0-to-the-plan-2x-3y-z-6-lie-on-curve-

Question Number 222531 by BHOOPENDRA last updated on 29/Jun/25 $${The}\:{foot}\:{of}\:{the}\:{perpendicular}\:{from}\: \\ $$$${a}\:{point}\:{of}\:{the}\:{circle}\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1},{z}=\mathrm{0} \\ $$$${to}\:{the}\:{plan}\:\mathrm{2}{x}+\mathrm{3}{y}+{z}=\mathrm{6}\:{lie}\:{on}\:{curve}−−−−−− \\ $$ Answered by mr W last updated on…

Question-221288

Question Number 221288 by alcohol last updated on 29/May/25 Answered by mahdipoor last updated on 29/May/25 $$\frac{{x}+\frac{{x}+…}{\mathrm{1}+…}}{\mathrm{1}+\frac{{x}+…}{\mathrm{1}+…}}={A}=\frac{{x}+{A}}{\mathrm{1}+{A}}\:\Rightarrow{A}=\sqrt{{x}} \\ $$$$\int\sqrt{{x}}{dx}=\frac{\mathrm{2}}{\mathrm{3}}{x}^{\mathrm{3}/\mathrm{2}} +{C} \\ $$$$ \\ $$ Terms…

proof-that-volume-of-frustum-of-circular-cone-is-1-3-h-A1-A2-A1A2-A-1-and-A-2-are-areas-of-base-

Question Number 220257 by abbb last updated on 10/May/25 $${proof}\:{that}\:{volume}\:{of}\:{frustum}\:{of} \\ $$$$\:{circular}\:{cone}\:{is}\:\frac{\mathrm{1}}{\mathrm{3}}{h}\left[{A}\mathrm{1}+{A}\mathrm{2}+\sqrt{{A}\mathrm{1}{A}\mathrm{2}}\right. \\ $$$${A}_{\mathrm{1}} {and}\:{A}_{\mathrm{2}} \:{are}\:\:{areas}\:{of}\:{base} \\ $$ Answered by MrGaster last updated on 10/May/25…

Question-219685

Question Number 219685 by alcohol last updated on 30/Apr/25 Answered by SdC355 last updated on 01/May/25 $$\kappa=\frac{\mathrm{2}}{\:\sqrt{\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)^{\mathrm{3}} }}\:\:\:\left(\mathrm{curvature}\:\kappa=\frac{\mid\mid{y}^{\left(\mathrm{2}\right)} \left({t}\right)\mid\mid}{\:\sqrt{\left(\mathrm{1}+\left({y}^{\left(\mathrm{1}\right)} \left({t}\right)\right)^{\mathrm{2}} \right)^{\mathrm{3}} }}\:\right) \\ $$$${r}=\frac{\mathrm{1}}{\kappa}=\frac{\sqrt{\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}}…