Menu Close

Category: Coordinate Geometry

Donnes-AD-1-DB-6-BCD-45-BAC-90-Determiner-1-AC-2-AE-Solution-BAC-BAC-90-BC-2-AB-2-AC-2-CD-cote-commun-aux-BAC-et-BDC-DB-2-CD-2-BC-2-2BC-CDcos-45-1-

Question Number 179360 by a.lgnaoui last updated on 28/Oct/22 $${Donnes}:\:\mathrm{AD}=\mathrm{1};\:\mathrm{DB}=\mathrm{6};\:\measuredangle{BCD}=\mathrm{45}°\:;\:\measuredangle{BAC}=\mathrm{90}° \\ $$$${Determiner} \\ $$$$\left.\mathrm{1}\right)\:\:\mathrm{A}{C}\:\:?\:\: \\ $$$$\left.\mathrm{2}\right)\:\:\mathrm{A}{E}? \\ $$$$−−−−−−−−−−−− \\ $$$${Solution} \\ $$$$\bigtriangleup{BAC}\:\:\:\:\:\:\measuredangle{BAC}=\mathrm{90}° \\ $$$${BC}^{\mathrm{2}} ={AB}^{\mathrm{2}}…

In-triangle-ABC-has-positive-integer-sides-A-2-B-and-C-gt-pi-2-What-is-the-minimum-length-of-the-perimeter-of-the-triangle-

Question Number 113740 by bemath last updated on 15/Sep/20 $${In}\:{triangle}\:{ABC}\:{has}\:{positive}\:{integer} \\ $$$${sides}\:;\:\angle{A}\:=\:\mathrm{2}\:\angle{B}\:{and}\:\angle{C}\:>\:\frac{\pi}{\mathrm{2}}. \\ $$$${What}\:{is}\:{the}\:{minimum}\:{length} \\ $$$${of}\:{the}\:{perimeter}\:{of}\:{the}\:{triangle}?\: \\ $$ Answered by bobhans last updated on 15/Sep/20…

can-the-directrix-of-a-parabola-be-in-the-form-y-mx-b-or-is-there-an-inclined-parabola-with-directrix-and-axis-of-symmetry-in-the-form-of-y-mx-b-

Question Number 48121 by JDlix last updated on 19/Nov/18 $${can}\:{the}\:{directrix}\:{of}\:{a}\:{parabola}\:{be}\:{in}\:{the}\:{form}\:{y}={mx}+{b}\:\:? \\ $$$${or}\:{is}\:{there}\:{an}\:{inclined}\:{parabola}\:{with}\:{directrix}\:{and}\:{axis}\: \\ $$$${of}\:{symmetry}\:{in}\:{the}\:{form}\:{of}\:{y}={mx}+{b}\:\:?? \\ $$ Commented by MJS last updated on 19/Nov/18 $$\mathrm{you}\:\mathrm{can}\:\mathrm{rotate}\:\mathrm{a}\:\mathrm{parabola},\:\mathrm{so}\:\mathrm{this}\:\mathrm{is}\:\mathrm{indeed} \\…

Question-113644

Question Number 113644 by AbhishekBasnet last updated on 14/Sep/20 Answered by 1549442205PVT last updated on 14/Sep/20 $$\mathrm{The}\:\mathrm{intersection}\:\mathrm{point}\:\mathrm{of}\:\mathrm{two}\:\mathrm{lines} \\ $$$$\mathrm{x}−\mathrm{y}+\mathrm{1}=\mathrm{0}\:\mathrm{and}\:\mathrm{2x}−\mathrm{y}−\mathrm{1}=\mathrm{0}\:\mathrm{is}\:\mathrm{roots} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{system}:\begin{cases}{\mathrm{x}−\mathrm{y}+\mathrm{1}=\mathrm{0}}\\{\mathrm{2x}−\mathrm{y}−\mathrm{1}=\mathrm{0}}\end{cases} \\ $$$$\mathrm{Substracting}\:\mathrm{two}\:\:\mathrm{above}\:\mathrm{equations} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{x}−\mathrm{2}=\mathrm{0}\Rightarrow\mathrm{x}=\mathrm{2},\mathrm{y}=\mathrm{3}.\mathrm{Replace}\:…