Menu Close

Category: Coordinate Geometry

0-2pi-dx-1-sinxcosx-4piln2-3-

Question Number 216695 by sniper237 last updated on 16/Feb/25 $$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{dx}}{\mathrm{1}+{sinxcosx}}\overset{?} {=}\:\frac{\mathrm{4}\pi{ln}\mathrm{2}}{\:\sqrt{\mathrm{3}}}\:\: \\ $$ Answered by Ghisom last updated on 16/Feb/25 $$\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\frac{{dx}}{\mathrm{1}+\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}}=\mathrm{8}\underset{\pi/\mathrm{4}}…

Question-216607

Question Number 216607 by Tawa11 last updated on 12/Feb/25 Answered by Rasheed.Sindhi last updated on 12/Feb/25 $$\mathrm{4}{x}^{\mathrm{2}} +{bx}−\mathrm{45}=\left({hx}+{k}\right)\left({x}+{j}\right);{h},{k},{j}\in\mathbb{Z} \\ $$$$\:\:\:\:\:\:\:\:={hx}^{\mathrm{2}} +\left({hj}+{k}\right){x}+{kj} \\ $$$${kj}=−\mathrm{45}\Rightarrow{j}=−\frac{\mathrm{45}}{{k}} \\ $$$$\frac{\mathrm{45}}{{k}}=−{j}\:\in\:\mathbb{Z}\:\rightarrow\left({D}\right)…

Question-216387

Question Number 216387 by Tawa11 last updated on 06/Feb/25 Answered by mr W last updated on 06/Feb/25 $$\left(\mathrm{6},\:\mathrm{0}\right)\: \\ $$$$\left(\mathrm{6}−\mathrm{6}\right)^{\mathrm{2}} +\left(\mathrm{0}−\mathrm{3}+{a}\right)^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} \\ $$$$\Rightarrow−\mathrm{3}+{a}=\mathrm{5}\:\Rightarrow{a}=\mathrm{8} \\…